CHAPTER 25

CANONICAL EQUATION K35 FOR RANDOM G-MATRICES.
STRONG V-LAW

We present a survey of some recent results established for non-Hermitian random matrices and
propose a new theory of these matrices based on the V -transform of the normalized spectral func-
tions (n.s.f.) vy (x y) of the eigenvalues of a nonsymmetric matrix = via the n.s.f. ,un(:z:, t, S)
of the eigenvalues of the Hermitian matrix (Hn - T[) (un - TI) , T =1t-+1is. We determine
the general form of possible limit normalized spectral functions of the matrix =,,, i.e., prove the
so-called V-law. We have now a great deal of evidence that the V'-law has many applications,

especially in physics.

25.1. Formulation of the main assertion

We first formulate our main result.

Theorem 25.1. (See the V-equation in [Gir72], [Gir73], [Gir84], [Gir92], [Gir96]).

Let =, = (&j); _j=1 be a complex random matrix whose entries SZ] ), ,j=1,...,n,
are jndependent for every n and given in the common probability space,
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Suppose that the densities p,&?) (x) of real or imaginary parts of the entries \/ﬁfgf)

exist and are such that
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where (3 > 1 is a certain number.
Then, with probability one,
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where
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k=1

A are eigenvalues of the matrix Z,,, the V-density
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An = (aij); =y, Cr=(cti()dij); =y Co = (cai(y)diy);

i,j=1" i,j=17
c2i(y) and ¢1;(y), i = 1, ..., n satisfy the system of V-equations K5 for G-matrices:
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p,k =1,...,n, there exists a unique solution of this system of equations in the class
of real positive analytic functions in y > 0, and the V -region G is equal to

G = {(t, s) : limsuplimsup |(0/0a) m,, (o, t, s)| < oo} : (25.10)

al0 n—oo



