Estimation of states of some recursively defined systems. Estimator S_6

V. L. GIRKO

Department of Probability and Statistics, Michigan State University East Lansing, Michigan 48824

Consider the problem of estimation of states of systems with discrete time described by the equations

$$\vec{x}_{i+1} = \vec{x}_i + A_i \vec{x}_i + \vec{\xi}_i; \quad \vec{y}_i = C_i \vec{x}_i + \vec{\eta}_i; \quad i = 1, 2, \dots$$
 (11.1)

where \vec{x}_i are the *n*-dimensional vectors of state; \vec{y}_i are *p*-dimensional vectors of observed variables; A_i are square $n \times n$ matrices; C_i are matrices of dimension $p \times n$; $\vec{\xi}_i$ and $\vec{\eta}_i$ are error vectors of dimensions n and p, respectively, which satisfy the inequality

$$\vec{\xi_i}, \vec{\eta_i} \in G, \ G = \left\{ \vec{\xi_i}, \vec{\eta_i} : \sum_{i=1}^k \left(\left\| \vec{\xi_i} \right\|^2 + \left\| \vec{\eta_i} \right\|^2 \right) \le 1 \right\}.$$

In this section we generalize the estimator S_3 for such an equation. Consider the following problem of estimating the state \vec{x}_k : find matrices \hat{K}_i of dimension $n \times p$ and a vector \vec{l} of dimension n which minimize the expression

$$\max_{\vec{\xi}_i, \vec{\eta}_i \in G} \left\| \vec{x}_{k+1} - \sum_{i=1}^k K_i \vec{y}_i - \vec{l} \right\|^2.$$
 (11.2)

Let $L_{n\times p}$ be the set of real matrices of dimension $n\times p$ and let L_n be the set of real vectors \vec{l} of dimension n.

Theorem 11.1. Under the above formulated assumptions

$$\min_{K_i \in L_{n \times p}; \vec{l} \in L_n} \max_{\vec{\xi}_i, \vec{\eta}_i \in G} \left\| \vec{x}_{k+1} - \sum_{i=1}^k K_i \vec{y}_i - \vec{l} \right\|^2 = \lambda_1 \left\{ \sum_{i=1}^k \left(Z_{i+1} Z_{i+1}^T + K_i^* K_i^{*T} \right) \right\}, \quad (11.3)$$

where the matrices Z_i satisfy the recursive equations

$$Z_{i+1}(I+A_i) = Z_i + K_i^* C_i; \ p = 1, ..., k; \ Z_{k+1} = I; \ \vec{l}^* = Z_1 \vec{x}_1;$$

the matrices K_i^* ; i = 1, ..., k satisfy the system of equations S_6

$$\sum_{l=1}^{s} p_{l} [K_{p}^{*T} + C_{p} S_{p}] \vec{\varphi}_{l} \vec{\varphi}_{l}^{T} = 0; \quad p = 1, ..., k$$
(11.4)

where

$$p_l > 0, \ l = 1, ..., s; \ \sum_{i=0}^{s} p_l = 1,$$

 $\vec{\varphi}_k$, k = 1, ..., s are orthonormal eigenvectors which correspond to the maximal s-multiple eigenvalue λ_1 of the matrix

$$\sum_{i=1}^{k} \left[Z_{i+1} Z_{i+1}^{T} + K_{i}^{*} K_{i}^{*T} \right],$$

the matrices S_p satisfying the system of equations

$$S_{p+1} = S_p + A_p S_p - Z_{p+1}^T; \quad p = 1, \dots, k; \quad S_1 = 0,$$
 (11.5)

one of the solutions of equation (10.4) is

$$K_p^{*T} = -C_p S_p, \ p = 1, ..., k.$$

Proof. It is obvious that

$$\left\| \vec{x}_{k+1} - \sum_{i=1}^{k} K_i \vec{y}_i - \vec{l} \right\|^2 = \left\| \vec{x}_{k+1} - \sum_{i=1}^{k} K_i C_i \vec{x}_i - \sum_{i=1}^{k} K_i \vec{\eta}_i - \vec{l} \right\|^2.$$

Consider the system of recursive equations

$$Z_{p+1} = Z_p - Z_{p+1}A_p + K_pC_p; p = 1, ..., k$$

with the initial condition $Z_{k+1} = I$. Then, using (10.1) after obvious transformations we have

$$\vec{x}_{k+1} - \sum_{i=1}^{k} K_i C_i \vec{x}_i = \vec{x}_{k+1} - \sum_{i=1}^{k} (Z_{i+1} - Z_i) \vec{x}_i - \sum_{i=1}^{k} Z_{i+1} A_i \vec{x}_i$$

$$= \vec{x}_{k+1} - \sum_{i=1}^{k} Z_{i+1} (\vec{x}_{i+1} - A_i \vec{x}_i - \vec{\xi}_i) - \sum_{i=1}^{k} Z_{i+1} A_i \vec{x}_i + \sum_{i=1}^{k} Z_i \vec{x}_i$$

$$= Z_1 \vec{x}_1 + \sum_{i=1}^{k} Z_{i+1} \vec{\xi}_i.$$

Therefore

$$\left\| \vec{x}_{k+1} - \sum_{i=1}^{k} K_i \vec{y}_i - \vec{l} \right\|^2 = \left\| Z_1 \vec{x}_1 + \sum_{i=1}^{k} Z_{i+1} \vec{\xi}_i + \sum_{i=1}^{k} K_i \vec{\eta}_i - \vec{l} \right\|^2.$$

Using the proof of Theorem 5.1 we get

$$\min_{\substack{K_i \in L_{n \times p}: \\ \vec{l} \in L_n}} \max_{\vec{k}_i, \vec{\eta}_i \in G} \left\| \vec{x}_{k+1} - \sum_{i=1}^k K_i \vec{y}_i - \vec{l} \right\|^2 = \min_{K_i \in L_{n \times p}} \lambda_1 \left\{ \sum_{i=1}^k \left(Z_{i+1} Z_{i+1}^T + K_i^* K_i^{*T} \right) \right\},$$

$$\vec{l}^* = Z_1 \vec{x}_1,$$

and the unknown matrices K_i^* satisfy the equation

$$\sum_{q=1}^{s} \vec{\varphi}_{q}^{T} p_{q} \sum_{i=1}^{k} (\tilde{Z}_{i+1} Z_{i+1}^{T} + \Theta_{i} K_{i}^{*T}) \vec{\varphi}_{q} = 0,$$
(11.6)

where $\vec{\varphi}_k$, k = 1, ..., s are orthonormal eigenvectors which correspond to the maximal s-multiple eigenvalue λ_1 of the matrix

$$\sum_{i=1}^{k} \left[Z_{i+1} Z_{i+1}^{T} + K_{i}^{*} K_{i}^{*T} \right],$$

 Θ_i are arbitrary matrices which have the same dimension as matrices K_i , and the matrices \tilde{Z}_{i+1} satisfy the equations

$$\tilde{Z}_{i+1} = \tilde{Z}_i - \tilde{Z}_{i+1}A_i + \Theta_i C_i; \ \tilde{Z}_{k+1} = 0; \ i = 1, ..., k.$$

Obviously

$$\begin{split} \sum_{i=1}^{k} \tilde{Z}_{i+1} Z_{i+1}^{T} &= \sum_{i=1}^{k} \left(\tilde{Z}_{i+1} Z_{i+1}^{T} + \tilde{Z}_{i+1} S_{i+1} - \tilde{Z}_{i} S_{i} \right) \\ &= \sum_{i=1}^{k} \left(\tilde{Z}_{i+1} Z_{i+1}^{T} + \tilde{Z}_{i+1} \left(S_{i} + A_{i} S_{i} - Z_{i+1}^{T} \right) - \tilde{Z}_{i} S_{i} \right) \\ &= \sum_{i=1}^{k} \left[\left(\tilde{Z}_{i} - \tilde{Z}_{i+1} A_{i} + \Theta_{i} C_{i} \right) S_{i} + \tilde{Z}_{i+1} A_{i} S_{i} - \tilde{Z}_{i} S_{i} \right] \\ &= \sum_{i=1}^{k} \Theta_{i} C_{i} S_{i}. \end{split}$$

Using this equality and the auxiliary systems of equations (11.5) we obtain that (11.6) equals

$$\sum_{q=1}^{s} \vec{\varphi}_q^T p_q \sum_{i=1}^{k} \Theta_i \left(K_i^{*T} + C_i S_i \right) \vec{\varphi}_q = 0.$$

From this equation we obtain all assertions of Theorem 11.1.

Consider the case when $\vec{\xi_i}$ and $\vec{\eta_i}$ are error vectors of dimensions m and n, respectively, which satisfy the inequality

$$\left(\vec{\xi}, \vec{\eta}\right) \in G, \ G = \left\{ \left(\vec{\xi}, \vec{\eta}\right) : \sum_{i=1}^{k} \left(\left\| \vec{\xi}_{i} \right\|^{2} + \left\| \vec{\eta}_{i} \right\|^{2} \right) \leq 1 \right\}$$

for some fixed k (where we have put $\vec{\xi} = (\xi_1, \dots, \xi_k)^T$, and similarly $\vec{\eta}$). Consider the following problem of estimating the state \vec{x}_k : to find matrices \hat{K}_i of dimension $m \times n$ and a vector \vec{l} of dimension m which minimize the expression

$$\varphi\left(K_1, \cdots, K_k; \vec{l}\right) = \max_{\left(\vec{\xi}, \vec{\eta}\right) \in G} \left\| \vec{x}_{k+1} - \sum_{i=1}^k K_i \vec{y}_i - \vec{l} \right\|^2.$$

The vector

$$\hat{\vec{x}}_{k+1} = \sum_{i=1}^{k} \hat{K}_i \vec{y}_i + \hat{\vec{l}}$$

is called linear minimax estimator of \vec{x}_{k+1} .

Repeating the proof of Theorem 10.1 we get

Theorem 11.2. Under the above formulated assumptions

$$\min_{K_i \in R^{m \times n}; \vec{l} \in R^m} \max_{(\vec{\xi}, \vec{\eta}) \in G} \left\| \vec{x}_{k+1} - \sum_{i=1}^k K_i \vec{y}_i - \vec{l} \right\|^2 = \lambda_{\max} \left\{ \sum_{i=1}^k \left(Z_{i+1} Z_{i+1}^T + K_i^* K_i^{*T} \right) \right\},$$

where the matrices Z_i satisfy the recursive equations

$$Z_{i+1}(I+A_i) = Z_i + \hat{K}_i C_i; i = 1, ..., k; Z_{k+1} = I.$$

Moreover, $\hat{\vec{l}} = Z_1 x_1$ and the matrices \hat{K}_i ; i = 1, ..., k satisfy the system of equations

$$\sum_{l=1}^{s} p_l \left[\hat{K}_i^T + C_i S_i \right] \vec{\varphi}_l \vec{\varphi}_l^T = 0; \quad i = 1, ..., k , \qquad (11.7)$$

where

$$p_l > 0; \ l = 1, ..., s, \ \sum_{i=1}^{s} p_l = 1,$$

 $\vec{\varphi}_k$, k = 1, ..., s are orthonormal eigenvectors which correspond to the maximal s-multiple eigenvalue λ_{\max} of the matrix

$$\sum_{i=1}^{k} \left[Z_{i+1} Z_{i+1}^{T} + \hat{K}_{i} \hat{K}_{i}^{T} \right]$$

and the matrices S_i satisfying the system of equations

$$S_{i+1} = S_i + A_i S_i - Z_{i+1}^T; \ p = 1, ..., k; \ S_1 = 0,$$

one of the solutions of equation (11.7) is

$$\hat{K}_i^T = -C_i S_i, \ i = 1, ..., k.$$

REFERENCES

- V.L. Girko, S.I. Lyascko and A.G. Nakonechny. On Minimax Regulator for Evolution Equations in Hilbert Space Under Conditions of Uncertainty. *Cybernetics*, N.1, 1987, 67–68 p.
- 2. V.L. Girko. Spectral Equations S_2 for Minimax Estimations of Solutions of Some Linear Systems*. Third International Workshop on Model Oriented Data Analysis (Moda-3) St. Petersburg, Petrodvorets, Russia 25–30 May 1992 p.11.
- 3. V.L. Girko. Spectral Equations S_1 and S_2 for Minimax Estimations of Solutions of some Linear Systems Linear Minimax Estimation Theory and Practice 3–4 August 1992, Oldenburg.
- 4. V.L. Girko. Spectral Equation for Minimax Estimator of Parameters of Linear Systems*. *Calculating and Applied Mathematics*, N.63, 1987, 114–115 p. Translation in *J. Soviet Math.* **66** 2221–2222 (1993).
- 5. V.L. Girko and N. Christopeit. Minimax Estimators for Linear Models with Nonrandom Disturbances. *Random Operators and Stochastic Equations* **3**, N.4, 1995, 361–377 p.
- 6. V.L. Girko. Spectral Theory of Minimax Estimation, *Acta Applicandae Mathematicae* **43**, 1996, 59–69 p.
- 7. V.L. Girko. Theory of Linear Algebraic Equations with Random Coefficients, (monograph), Allerton Press, Inc. New York 1996, 320 p.