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Consider the problem of estimation of states of systems with discrete time described by
the equations

Tl =T+ AT+ & =0+ i=1,2, ... (11.1)

where 7; are the n-dimensional vectors of state; 1; are p-dimensional vectors of observed
variables; A; are square n X n matrices; C; are matrices of dimension p x n; & and 7j; are
error vectors of dimensions n and p, respectively, which satisfy the inequality
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In this section we generalize the estimator S3 for such an equation. Consider the

following problem of estimating the state Zj : find matrices K; of dimension n X p and a
vector [ of dimension n which minimize the expression
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Let L, x, be the set of real matrices of dimension n x p and let L,, be the set of real

vectors [ of dimension n.

THEOREM 11.1. Under the above formulated assumptions
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where the matrices Z; satisfy the recursive equations

-

Zipn(I+A) =Zi + K[Cys p=1,...k; Zypp1 =1; 1" = Z17y;
the matrices K;;i =1, ...,k satisfy the system of equations Sg

S

> KT+ CoSEF =0; p=1,..k (11.4)
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where

S
p>0,1=1,..s; Zpl =1,
j=0

Pr, k=1,...,s are orthonormal eigenvectors which correspond to the maximal s-multiple
eigenvalue A\, of the matrix
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the matrices S, satisfying the system of equations

Spr1=Sp+ ApS, —ZL s p=1,--+k; S1 =0, (11.5)

one of the solutions of equation (10.4) is

KT =-CpS,, p=1,...,k

Proof. 1t is obvious that
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Consider the system of recursive equations

Zp_|_1 = Zp - Zp_|_1Ap + KpCp; P = ]_, ceey k

with the initial condition Z;41 = I. Then, using (10.1) after obvious transformations we
have
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Using the proof of Theorem 5.1 we get
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I* = Zlfl,

and the unknown matrices K satisfy the equation
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Z ¥qPa Z H—IZz—H + @iK;T)QBq =0, (11.6)
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where @i, k = 1,...,s are orthonormal eigenvectors which correspond to the maximal
s-multiple eigenvalue A\; of the matrix

k
Z +1 + K*K*T]
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O; are arbitrary matrices which have the same dimension as matrices K;, and the matrices
Ziy1 satisfy the equations

Zis1=Zi — Zi1Ai + 0,05 Zjpr =0; i=1,..,k
Obviously
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= Z (Zz—l-lZz-H + ZH-l (S + AiSi — H—l) - le%)
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= i [(Z Z, i1 Ai + 0O, C’) S; + ZH-lAiSi - ZZSZ]
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Using this equality and the auxiliary systems of equations (11.5) we obtain that (11.6)
equals

S k
N @Tp, Y0 (KT + CiS;) @, = 0.

g=1 i=1

From this equation we obtain all assertions of Theorem 11.1.
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Consider the case when 5_'; and 177; are error vectors of dimensions m and n, respectively,
which satisfy the inequality

(&) ec, 6= {(5ﬁ) i( 2 2+||m||2) < 1}
i=1

for some fixed k (where we have put £ = (&1, ,§k)T , and similarly 77 ). Consider the
following problem of estimating the state 7 : to find matrices K; of dimension m x n and
a vector [ of dimension m which minimize the expression
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The vector

<\.1>

Hp

k
is called linear minimax estimator of ka.

Repeating the proof of Theorem 10.1 we get

THEOREM 11.2. Under the above formulated assumptions
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where the matrices Z; satisfy the recursive equations
Zi+1 (I + Al> == ZZ + chl,l = 1, ceey k’; Zk_|_1 =1.

Moreover, [ = Z1x1 and the matrices R’Z,z =1, ..., k satisfy the system of equations

> w KT+ Cisi| @igl =00 i= 1,k (11.7)
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where

S
p>0; I=1,..5 Y p=1,

Pk, k=1,...,s are orthonormal eigenvectors which correspond to the maximal s-multiple
eigenvalue Ap.x of the matrix

Z [ H—l +1 _I_IA(Z[A(’;T

=1



and the matrices S; satisfying the system of equations

Siv1 =S+ AiSi = Zl s p=1,...k 81 =0,

one of the solutions of equation (11.7) is

KI'=—¢i8;, i=1,.. k.
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