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Assume that a linear regression model

~y = X~c + ~ε

is given, where ~c is an unknown m-dimensional vector, ~y is an n-dimensional vector of
observations,X = (xij), j = 1, , m, i = 1, , n;n ≥ m is a matrix, and ~ε is an n-dimensional
vector of unobservable perturbations.

Let the vectors ~c and ~ε belong to the measurable bounded domains C ⊂ Km and
E ⊂ Kn, respectively. By means of a linear transformation of the vector ~y : Tm×n~y + ~tm

we find a matrix T̂m×n and vector ~̂t which minimize the loss function

ϕ
(
T, ~t

)
:= sup

~ε∈E, ~c∈C
f

{(
T~y − ~t− ~c

)T
V

(
T~y − ~t− ~c

)}
,

where Vm×m is a nonnegative definite matrix and f is a certain differentiable function
which satisfies conditions of Theorem 5.1. The vector ~̂c = T̂ ~y + ~̂t is called the S5-estimator
(or minimax estimator) of the vector ~c.

Using the main spectral equation as in Section 5 we have that

inf
T∈Lm×n,~t∈Km

sup
~ε∈E, ~c∈C

f
{(

T~y − ~t− ~c
)T

V
(
T~y − ~t− ~c

)}

= inf
T∈Lm×n,~t∈Km

lim
N→∞

λ1

[
AN

(
T, ~t

)]
,

where

AN

(
T, ~t

)
= (aij)

N
i,j=1 ,

aij =
∫

~ε∈E, ~c∈C

θi (~ε, ~c)θj (~ε, ~c) f
{[

(TX − I)~c− T~ε− ~t
]T

V
[
(TX − I)~c− T~ε− ~t)

]}

×
∏

p=1,...,n
l=1,...m

dεpd cl,

θj(~ε, ~c) is an arbitrary orthonormal system of functions in the domain C × E.
Therefore, we can change our problem: find matrix T ∗N and vector ~t∗N which minimize

the expression
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inf
T∈Lm×n,~t∈Km

λ1

[
AN

(
T, ~t

)]
= λ1

[
AN

(
T ∗N , ~t∗N

)]
.

Using the proof of Theorem 6.2 we obtain that the matrix T ∗N ⊂ Lm×n and the vector
~t∗N ⊂ Km satisfy the system of equations S5.

s∑

k=1

~νT
k





∫

~ε∈E, ~c∈C

θi(~ε, ~c)θj(~ε, ~c)V
(
(T ∗NX − I)~c− T ∗N~ε− ~t∗N

)

× (
~cT XT − ~εT

) ∂f

∂u

{[
(T ∗NX − I)~c− T ∗N~ε− ~t∗N

]T

V
[
(T ∗NX − I)~c− T ∗N~ε− ~t∗N

]} ∏

p,l

dεp dcl;

s∑

k=1

~νT
k





∫

~ε∈E, ~c∈C

θi(~ε, ~c)θj(~ε, ~c)V
(
(T ∗NX − I)~c− T ∗N~ε− ~t∗N

)




N

i,j=1

× ∂f

∂u

{[
(T ∗NX − I)~c− T ∗N~ε− ~t∗N

]T
V

[
(T ∗NX − I)~c− T ∗N~ε− ~t∗N

]}

×
∏

p,l

dεp dcl~vkpk = 0,

where ~vk, k = 1, · · · , s are the eigenvectors corresponding to the maximal j-multiple eigen-
value λ1 (AN ) of the matrix AN ,

s∑

k=1

pk = 1; pk > 0, k = 1, ..., s.
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