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In this section we develop an approach to the estimation of a solution of a system of
equations with random coefficients and random errors in a system of observations.

Let the system of linear equations

A~x = ~h + ~ξ1,

be given, where A is a nondegenerate n×n matrix, ~x,~h, ~ξ1 are the vectors of dimension n,
the matrix A and a vector ~h are known and the value of a vector ~ξ1 is an unknown vector.

Assume that the observed vector ~y of dimension 4m is connected with the vector ~x
by the equation

~y = Ξ~x + ~ξ2

where Ξ is a random matrix, ~ξ2 is an unknown vector of dimension m, but ~ξ1 and ~ξ2 satisfy
the inequality

∥∥∥~ξ1

∥∥∥
2

+
∥∥∥~ξ2

∥∥∥
2

≤ 1.

The problem is to estimate ~x (optimally in a certain sense) by a linear transform of
~y. More precisely, we seek for an n × n matrix K∗ and a vector ~l∗ of dimension n which
minimize

E max
‖~ξ1‖2

+‖~ξ2‖2≤1

∥∥∥~x−K∗~y −~l∗
∥∥∥

2

.

The vector

~x∗ = K∗~y +~l∗

is called a spectral (S4-estimator) or minimax estimator of the vector ~x.

Without loss of generality the vector ~h can be chosen to be zero.

Theorem 9.1. If the matrix A is nondegenerate, then

min
K∈Ln×m,~l∈Kn

E max
‖~ξ1‖2

+‖~ξ2‖2≤1

∥∥∥~x−K∗~y −~l∗
∥∥∥

2

= Eλ1

{
(I −K∗Ξ)A−1A−1T (I −K∗Ξ)T + K∗K∗T

} (9.1)
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and the matrix K∗ satisfies the equation

E
{
−ΞA−1A−1T (I −K∗Ξ)T + K∗T

} s∑

k=1

pk ~ϕk(D)~ϕT
k (D) = 0, (9.2)

where ~ϕk are orthonormal eigenvectors corresponding to the s-multiple maximal eigenvalue
of the random matrix

D = (I −K∗Ξ)A−1A−1T (I −K∗Ξ)T + K∗K∗T ,

~l∗ = 0, and pk > 0 are random variables, such that

s∑

k=1

pk = 1.

Note that the number s is also a random variable. In particular, when the matrix Ξ
has a density, then the maximal eigenvalue is simple with probability 1 and in this case
s = 1, p1 = 1.

The proof is almost the same as in Section 6. It is sufficient to note that, as in that
section, we get

max
‖~ξ1‖2

+‖~ξ2‖2≤1

‖~x−K∗~y‖2 = λ1

{
B (K)BT (K)

}
,

where B (K) =
[
(I −KΞ)A−1,K

]
.

In a similar manner we can generalize all previous theorems from Sections 5-8 of this
chapter when some matrices in the system of equations are random.

For instance, let us assume that the observed vector ~y of dimension n is connected
with the vector ~x by the equation

~y = Ξ~x + ~ξ2,

where Ξ is a known n×m matrix, ~ξ2 is an unknown vector of dimension n, and ~ξ1 and ~ξ2

satisfy the inequality

∥∥∥~ξ1

∥∥∥
2

+
∥∥∥~ξ2

∥∥∥
2

≤ 1.

The problem is to estimate ~x (optimally in a certain sense) by a linear transform of

~y. More precisely, we seek for an m × n matrix K̂ and a vector ~̂l of dimension m which
minimize the loss function

ϕ
(
K,~l

)
= max
‖~ξ1‖2

+‖~ξ2‖2≤1

∥∥∥~x−K~y −~l
∥∥∥

2

.

The vector
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~̂x = K̂~y + ~̂l

is called a spectral or minimax estimator of the vector ~x. Without loss of generality the
vector ~h can be chosen to be zero.

Theorem 9.2. If the matrix A is regular, then

min
K∈Rm×n,~l∈Rm

max
‖~ξ1‖2

+‖~ξ2‖2≤1

∥∥∥~x−K~y −~l
∥∥∥

2

= λmax

{(
I − K̂Ξ

)
A−1A−1T

(
I − K̂Ξ

)T

+ K̂K̂T

}
,

and the matrix K̂ satisfies the equation

{
−ΞA−1A−1T

(
I − K̂Ξ

)T

+ K̂T

} s∑

k=1

pk ~ϕk(D)~ϕT
k (D) = 0,

where ~ϕk(D) are orthonormal eigenvectors corresponding to the s-multiple maximal eigen-
value of the matrix

D =
(
I − K̂Ξ

)
A−1A−1T

(
I − K̂Ξ

)T

+ K̂K̂T , ~̂l = 0,

and
s∑

k=1

pk = 1, pk > 0, k = 1, ..., s.

The proof is almost the same as in Section 5. It is sufficient to note that, as there, we
get

max
‖~ξ1‖2

+‖~ξ2‖2≤1

‖~x−K~y‖2 = λmax

{
(I −KΞ)A−1A−1T (I −KΞ)T + KKT

}
.

Equation (9.2) can be solved numerically by means of various methods of solution
of functional equations, for example, by the principle of condensed mappings. Instead of
expectation in this equation we can consider a normalized sum of independent realizations
of random matrices and use the Monte Carlo method.
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