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Assume that a linear regression model

~y = X~c + ~ε

is given, where ~c is an unknown m-dimensional vector, ~y is an n-dimensional vector

X = (xij) , i = 1, ..., n; j = 1, ..., m; n ≥ m

is a matrix, and is an n-dimensional vector of unobservable perturbations. Let the vectors
~c and ~ε satisfy the inequality

‖~ε‖2 + β ‖~c‖2 ≤ 1, 0 < β < ∞.

By means of a linear transformation of the vector ~y :

Tm×n~y + ~tm

we find a matrix T̂m×n which minimizes the loss function

ϕ := max
‖~ε‖2+β‖~c‖2≤1

(T~y − ~c)T
V (T~y − ~c) ,

where Vm×m is a nonnegative definite matrix. The vector ~̂c = T̂ ~y is called the S3 - estimator
(or minimax estimator) of the vector ~c. The motivation of our problems is confirmed by
many practical problems. In many of them it is difficult to verify that perturbations are
random and also it is difficult to find covariance matrices of random perturbations. Since
the perturbations belong to complex sets, we simplify problems considering ellipses which
contain these sets. As in Section 5 we obtain that

min
T∈Lm×n

max
‖~ε‖2+β‖~c‖2≤1

(T~y − ~c)T
V (T~y − ~c)

= λ1

{
β−1

√
V (T ∗X − I) (T ∗X − I)T

√
V +

√
V T ∗T ∗T

√
V

}
,

and that the matrix T ∗ satisfies the spectral equation S3

{
X (T ∗X − I)T

β−1 + T ∗T
} j∑

k=1

√
V ~vk~v

T
k

√
V pk = 0, (8.1)

where ~vk, k = 1, · · · , j are the orthogonal eigenvectors corresponding to the maximal
eigenvalue of the matrix
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β−1
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V , pk > 0,
∑j

k=1
pk = 1.

One of the solutions of equation (8.1) is

T ∗ = XT
(
βI + XXT

)−1
.
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