
9. G9-ESTIMATOR OF THE SOLUTION OF THE DISCRETE

KOLMOGOROV-WIENER FILTER

The discrete analog of the Kolmogorov-Wiener filter has the form

Rm~ϕ = ~b, (9.1)

where

Rm =
{
m−1R

(
sm−1, km−1

)}m

k,s=1
; ~bT (t) =

{
Q

(
t, sm−1

)
, s = 1, . . . , m

}
,

~ϕT (t) =
{
ϕ

(
t, km−1

)
, k = 1, ..., m

}
,

R (x, y) = E [α (x)−Eα (x)] [α (y)−Eα (y)] ,

Q (x, y) = E [α (x)−Eα (x)] [β (y)−Eβ (y)] ,

and α (x) , β (y) are random processes. If Rm > 0, then the estimator ~̂ϕ =
(
R̂m

)−1
~̂b

converges in probability to ~ϕ when n1, n2 →∞, where

R̂ =
{

m−1R̂
(
sm−1, km−1

)}m

k,s=1
, ~ϕT (t) =

{
ϕ

(
t, km−1

)
, k = 1, ...,m

}
;

~̂b
T

(t) =
{

Q̂
(
t, sm−1

)
, s = 1, . . . , m

}
,

R̂ (x, y) = (n1 − 1)−1
n1∑

k=1

[αk (x)− α̂ (x)] [αk (y)− α̂ (y)],

Q̂ (x, y) = (n2 − 1)−1
n2∑

k=1

[αk (x)− α̂ (x)]
[
βk (y)− β̂ (y)

]
,

and αk (x) , βk (y) are independent observations of α (x) , β (y) .
As mentioned in previous sections of this chapter, the large order of system (9.1)

requires a large number of observations of stochastic processes α (x) , β (y) .
Therefore, it is of interest to obtain more accurate estimators. Applying the G-

analysis technique, which is described in [Gir44, Gir54, Gir69, Gir84], we can ob-
tain an estimator of ~ϕ, such that it would approach in probability ~ϕ, provided that
limn→∞mn−1 = c < 1. We assume for simplification of formulas that vector ~b is
known. This estimator will be referred to as the G9-estimator. It is

~G9 =
(
R̂m

)−1
~b

(
1− mn

n

)
. (9.2)

Denote

~αT
k =

(
αk

(
s

m

)
, s = 1, . . . , m

)
, R−1/2(~αk −E ~αk) = ~ξk = (ξsk s = 1, . . . , m)T .



Theorem 9.1. ([Gir44], [Gir54], [Gir69], [Gir84]) If random variables ξsk are indepen-
dent for every n, E |ξki|4+δ ≤ c, δ > 0, lim

n1→∞
mn−1

1 < 1; λi (Rm) ≤ c < ∞, the vector

~b is known,

sup
m

[
~bT~b + ~cT~c

]
< ∞,

where ~c ∈ Rm, and λi (Rm) are the eigenvalues of the matrix Rm, then

p lim
n1→∞

[
~cT ~G9 − ~cT ~ϕ

]
= 0.
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