
8. CLASS OF G8-ESTIMATORS OF THE SOLUTIONS OF SYSTEMS

OF LINEAR ALGEBRAIC EQUATIONS (SLAE)

Let some system S with input vector ~xT = (x1, . . . , xm) and output variables y be
given. As a mathematical model M1 of the system S, it is natural to take the equation
y = A (~x) + ε where A (~x) is some operator, and ε is an error of such representation.
Choosing different input vectors ~x1, . . . , ~xn we have a system of equations

~y = A + ~ε,

where
A = {A (~x1) , . . . , A (~xn)}

is an operator acting in a space of vectors ~x with values in a space of vectors ~yT =
(y1, . . . , yn), and ~εT = {ε1, . . . , εn} is a vector of errors of the model M1. If y = f (~x) ,
where f is an unknown analytic function, then for simplification of the calculations we
can take the operator A to be

A~x =
m∑

i=1

cixi; A~x =
m∑

i=1

ciϕi (xi)

or

A~x =
m∑

i=1

cixi +
m∑

i,j=1

cijxixj + ... +
m∑

i1,...,ik=1

ci1,...,ik
xi1 ...xik

,

where ci, cij , ci1,...,ik
are unknown coefficients; ϕi are known functions. We note that

in all these cases A~x = ~cT~z, where ~c is an unknown vector and ~z is a known vector.
Thus, we arrive at model M1 which is linear with respect to the unknown parameters:

~y = X~c + ~̃ε,

where XT = [~z1, . . . , ~zn] and ~̃ε is a vector of errors. In this section we formulate the
methods of finding coefficients ci if we have the observations of y and the input vectors
~x.

8.1. The classical least squares method

Assume that a mathematical model of a system S has the form

y = ~xT~c + ε,

where ~x is an m-dimensional vector of input parameters, ~c is an unknown m-dimensional
vector; y is the observable variable of a system S, and ε is a model error. Let n
observations y1, . . . , yn of a system S under the values ~x1, . . . , ~xn of a vector ~x be made.
Then for the unknown vector ~c we get the system of equations

~y = X~c + ~ε, (8.1)

where ~εT = (ε1, . . . , εn) is the observation error. The vectors ~c and ~ε in the system of
equations (8.1) are unknown. This system of equations is undetermined with respect
to the unknown vectors ~c and ε and in the general case has an infinite set of solutions.
Calculating the vector ~c it is desirable to know the value of the vector ~ε. However,



because of the indeterminancy of the system (8.1), it is difficult to find the true value
of the vector ~ε without any auxiliary conditions. We can reduce the system (8.1) to the
form

~y = X~̂c, (8.2)

where the vector ~c is replaced by a new vector ~̂c which is different from ~c in general.
The preliminary investigations of the system (8.1) were made in the following way. In
general the solution ~̂c of a system (8.2) may not exist. However it is not necessary to
find a solution of this system. We need to find the value of ~̂c which minimizes some
quality criterion of an estimator F

{
~y −X~̂c

}
. For the simplification of calculations as

the quality criterion the function

I(~u) = ~uT ~u = ‖~u‖2

is usually chosen. If the inverse matrix
(
XT X

)−1 exists, then we can obtain the mini-

mizer of
∥∥∥~y −X~̂c

∥∥∥ as

~̂c = (XT X)−1XT ~y. (8.3)

This formula explains the name, the “Least Squares Method”. The estimation is

~̂c− ~c = (XT X)−1XT ~ε. (8.4)

If the inverse matrix
(
XT X

)−1 does not exist, then the function ϕ(~c) := ‖~y −X~c‖2
can have uncountable points of minimum. Again, to simplify calculations among all
points of the minimum, the vector ~̃c with the smallest Euclidean norm is chosen. We
can find this vector in the following way: consider the function

ϕ (~c, α) := ‖~y −X~c‖2 + α ‖~c‖2 , α > 0

instead of the function ϕ(~c) := ‖~y −X~c‖2 . Because α > 0, the minimum of function
ϕ(~c, α) is unique and the vector ~cα, under which the function ϕ(~c, α) will take the
minimal value, is defined by the formula

~cα =
(
αI + XT X

)−1
XT ~y. (8.5)

It is easy to prove that limα↓0 ~cα = ~̃c.
As the G-estimators of the regularized pseudo-solutions

~xα =
[
Iα + XT X

]−1
XT~b,

we choose a regularized solution

~yθ = Re
[
I (θ + iε) + ΞT Ξ

]−1
ΞT~b,

where ε 6= 0 and θ are real parameters, Ξ =
(
ξ
(n)
ij

)
is the observation of the random

matrix X + H, where H is a certain random matrix. The G-estimators of the values
~xα belong to the class of G̃8 -estimators and are denoted by G8. In this section, the
following G8-estimator of G̃8-class is proposed



~G8 = Re
[
I

(
θ̂1 + iε

)
+ ΞT Ξ

]−1

ΞT~b. (8.6)

Here θ̂1 is the maximal real solution of the equation

fn(θ) = α, (8.7)

where α ≥ 0,

fn(θ) = θRe [1 + δ1a (θ)]2 − εIm [1 + δ1a (θ)]2 + (δ1 − δ2) [1 + δ1Rea(θ)] ,

a (θ) =
1
n

Tr
[
I (θ + iε) + ΞT Ξ

]−1
, δ1 = σ2

nn , δ2 = σ2
nm,

σ2
n is the variance of entries ξ

(n)
ij of the matrix Ξ =

(
ξ
(n)
ij

)
. We call equation (8.7) the

main equation for the G8-estimator.
It is proved [Gir44, Gir54, Gir69, Gir84] that under certain conditions, for every

γ > 0
lim
ε→0

lim
n→∞

P
{|~d[~G8 − (Iα + XT X)−1XT~b]| > γ

}
= 0,

where ~d is an arbitrary vector such that ~dT ~d ≤ c < ∞.

8.2. Modified G8-estimator of the solution of SLAE

In this section, the following modified G8-estimator from the G̃8-class for

~xα = [Iα + AT A]−1AT~b

is proposed,

~G8(α, ε, B, C) = Im
∫ B

0

{
e|sp|

π

∫ C

−C

Im ([Iθ̂ + XT X]−1XT~b)e−itpdt

}
e−p(α−iε)dp.

Here θ̂1 is the measurable complex solution of the equation

θ̂

{
1 +

σ2

n
Tr

[
Iθ̂ + XT X

]−1
}2

+
(
1− mn

n

) {
1 +

σ2

n
Tr

[
Iθ̂ + XT X

]−1
}

= −z,

σ2
n is the variance of entries x

(n)
ij of observation X =

(
x

(n)
ij

)
of matrix A + Ξ, z =

t + is, s ≥ c, c is a certain constant.
Under certain conditions we have ([Gir44], [Gir54], [Gir69], [Gir84])

lim
B→∞

lim
C→∞

p lim
n→∞

~dT
[
~G8(α, ε,B,C)− Re

[
I(α + iε) + AT A

]−1
AT~b

]
= 0.

8.3. G8-estimator of the solutions of SLAE with block structure



For linear forms ~dT ~xα of regularized pseudo-solutions ~xα = [Iα + AT A]−1AT~b of the
systems of linear algebraic equations A~x = ~b with block structure, the following G8-
estimator

~dT ~G8 = −Re~dT
[
C1 + iεIm + ZT

s (C2 − iεIn)−1
Zs

]−1

ZT
s (C2 − iεIn)−1~b,

is suggested. Here A is a matrix of the size np×mq, n ≥ m, ~x and ~b are vectors, α > 0
is a parameter of regularization, ε > 0; ~b ∈ Rnp; ~dT ∈ Rmq; Zs = s−1

∑s
i=1 Xi; Xi

are independent observations of the matrix A+Ξ, Ξ =
(
Ξ(n)

ij

)j=1,...,m

i=1,...,n
is a random ma-

trix with independent blocks Ξ(n)
ij , EΞ(n)

ij = 0, E
∥∥∥Ξ(n)

ij

∥∥∥
2

< ∞; and C1 = (C1iδij)
m
i,j=1 ,

C2 = (C2iδij)
n
i,j=1 are block diagonal real matrices that are arbitrary measurable solu-

tions of the system of nonlinear equations

C1l + Re
n∑

j=1

[
1
s
EΞ(n)T

jl {Qjj}Ξjl

]

Q=[C2−iεIn+X̃(C1+iεIm)−1X̃T ]−1
= αI;

C2k + Re
m∑

j=1

1
s

[
EΞ(n)

kj {Θjj}ΞT
kj

]
Θ=[C1+iεIm+X̃T (C2−iεIn)−1X̃]−1 = I,

k = 1, . . . , n; p = 1, . . . ,m, X̃ = Zs.

It is proved [Gir84, p.236] that under certain conditions, for every γ > 0,

lim
ε→0

lim
n→∞

P
{∣∣∣~dT

(
~G8 − ~xα

)∣∣∣ > γ
}

= 0.

8.4. G8-estimator of the solutions of SLAE with symmetric block
structure

Let A~x = ~b be a SLAE, where Apq×pq =
(
A

(n)
ks

)p

k,s=1
, A

(n)
ks = A

(n)T
ks and A

(n)
ks ; k ≥

s, k, s = 1, ..., p are blocks of the dimension q, and let ~x, ~b be vectors. We consider the
linear form of the regularized solution of such a system

~dT ~xε = ~dT Re [Apq×pq + iεIn]−1 ~b; ~d ∈ Rn; n = pq; ε > 0.

For linear forms ~dT ~xε of regularized pseudo-solutions,

~xε = Re [Apq×pq + iεIn]−1 ~b,

of the systems of linear algebraic equations A~x = ~b with block structure, the following
G8–estimator

~dT ~G8 = −Re [Xpq×pq + C (ε) + iεIn]−1 ~b

is considered. Here, Xpq×pq is an observation of matrix Ξpq×pq + Apq×pq, Ξpq×pq =(
Ξ(n)

ks

)p

k,s=1
, Ξ(n)

ks = Ξ(n)T
ks and Ξ(n)

ks ; k ≥ s, k.s = 1, ..., p are independent random



blocks of the dimension q, Cpq×pq (ε) =
(
δijC

(n)
jj (ε)

)p

i,j=1
and the matrix-blocks Css (ε)

satisfy for z = iε the canonical equation

Cjj (ε) = ReE
p∑

s=1

Ξ(n)
js Qss Ξ(n)T

js

∣∣∣
Q=[Xpq×pq+Cpq×pq(ε)+iεIn]−1

.

It is proven in [Gir84, p.250] that under certain conditions, for every γ > 0

lim
ε↓0

lim
n→∞

P
{∣∣∣~dT

(
~G8 − ~xε

)∣∣∣ > γ
}

= 0.
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