
6. G6-ESTIMATOR OF STIELTJES’ TRANSFORM OF COVARIANCE

MATRIX PENCIL

In multivariate analysis, we generally wish to test the following three hypotheses:
I. Equality of the correlation matrices of two n-variate normal populations.

II. Equality of the m-dimensional mean vectors for l-variate normal populations.
III. Independence between m-set and q-set of variates in (m + q) -variate normal popu-

lation, with m < q.
Often the normalized spectral functions of the covariance matrices pencil are used

for a verification of these tests.
A large series of papers is devoted to the analysis of normalized spectral functions

of the empirical covariance matrices pencil (see reviews and books on the spectral
theory of random matrices in the References of this book). However, for many years,
nobody could solve the problem of obtaining an equation for Stieltjes’ transform of
spectral functions of large order empirical covariance matrices when observations of the
random vector are independent. In this section, we propose a new G6-estimator initially
presented in [Gir44, Gir54] to solve this problem.

Let the vectors ~x1, . . . , ~xn of dimension mn be a sample of independent observations
of the random vector ~η, E~η = ~a, and E(~η−~a)(~η−~a)T = Rmn

. Let R̂mn
be the empirical

covariance matrix:

R̂mn = n−1
n∑

k=1

(~xk − ~̂a)(~xk − ~̂a)T, ~̂a = n−1
n∑

k=1

~xk.

The statistic

µmn(x,Rmn) = m−1
n

mn∑
p=1

χ
{
λp(Rmn) < x

}

is called a normalized spectral function of the matrix Rmn . Here, χ is the indicator
function and λp(Rmn) are the eigenvalues of the matrix Rmn .
Consider nonsingular covariance matrices R1 and R2 of the independent m-dimensional
random vectors ~ξ1 and ~ξ2, ~a1 = E ~ξ1, ~a2 = E ~ξ2. The statistic

µn(x,R1, R2) = m−1
m∑

k=1

χ{λk(R1, R2) < x}

is called the normalized spectral function of the covariance matrix R1 and R2 pencil.
Here λk(R1, R2) are the roots of the characteristic equation

det[R1z −R2] = 0.

To avoid confusion, we will assume that the inverse matrix R−1
1 exists. Sometimes we

will use another definition of the normalized spectral function of the covariance matrices
R1 and R2 pencil

µn(x,R1, R2) = m−1
m∑

k=1

χ
{
λk(R−1

1 R2) < x
}
,



where λk(R−1
1 R2) are eigenvalues of matrix R−1

1 R2.
Consider Stieltjes’ transform with the real parameter

∫ ∞

0

dµn(x,R1, R2)
t + x

= m−1 ∂

∂t
ln det[R1t + R2]

= m−1TrR1[R1t + R2]−1, t > 0.

Let ~x1, . . . , ~xn1 and ~y1, . . . , ~yn2 be independent observations of two independent m-
dimensional random vectors ~a1 + R

1/2
1

~ξ1 and ~a2 + R
1/2
2

~ξ2,

~ξT
1 = {ξ11, . . . , ξ1m}, ~ξT

2 = {ξ21, . . . , ξ2m}.

Let random components ξ11, . . . , ξ1m; ξ21, . . . , ξ2m be independent for every m and
consider empirical covariance matrices and mean vectors

R̂1 = n−1
1

n1∑

k=1

(~xk − ~̂x)(~xk − ~̂x)T, ~̂x = n−1
1

n1∑

k=1

~xk,

R̂2 = n−1
2

n2∑

k=1

(~yk − ~̂y)(~yk − ~̂y)T, ~̂y = n−1
2

n2∑

k=1

~yk.

The expression

µn(x, R̂1, R̂2) = m−1
ν∑

k=1

χ
{
λk(R̂1, R̂2) < x

)

is called the normalized spectral function of the covariance matrix R̂1 and R̂2 pencil.
Here λk(R̂1, R̂2) are the roots of the characteristic equation det[R̂1z − R̂2] = 0 and ν
is a discrete random variable. Obviously, if R̂−1

1 exists with probability 1, then ν = m
with probability 1.

We study Stieltjes’ transform with the real parameter

∫ ∞

0

dµn(x, R̂1, R̂2)
t + x

= m−1 ∂

∂t
ln det[R̂1t + R̂2]

= m−1Tr R̂1[R̂1t + R̂2]−1, t > 0.

Let us write this expression as

m−1Tr R̂1[R̂1t + R̂2]−1 = −
∫ ∞

0

∂

∂t
m−1Tr[Iα + R̂1t + R̂2]−1 dα.

It can be shown (see [Gir44], [Gir54]]) that under mild conditions on empirical covariance
matrices we can consider instead of this integral, the following expression

− ∂

∂t

∫ A

ε

m−1Tr[Iα + R̂1t + R̂2]−1dα + o(ε) + o(A−1).



Here ε > 0 is a small number and A is a large number. Therefore, we can study the
covariance matrices pencil with the help of normalized traces of the resolvent of the
sum of covariance matrices R̂1 and R̂2:

m−1Tr[Iα + R̂1t + R̂2]−1, α > 0, t > 0.

Let us consider Stieltjes’ transform

b(z, α) =
∫ ∞

0

dµmn(x, R̂1 + αR̂2)
x− z

= m−1
n Tr

[
R̂1 + αR̂2 − zImn

]−1
, z = t + is, s > 0

and the canonical equation for the matrix C(z) = (cpl(z))mn

p,l=1

C(z, α) =
{

n−1
1

n1∑

k=1

E
~ηk~ηT

k

1 + n−1
1 ~ηT

k C(z, α)~ηk

+αn−1
2

n2∑

k=1

E
~νk~ν

T
k

1 + n−1
2 ~νT

k C(z, α)~νk

−zIm

}−1

,

where ~ηk = {ηpk; p = 1, . . . , m}T = ~xk − ~a1, ~νk = {νpk; p = 1, . . . , m}T = ~yk − ~a2 and
Im is the identity matrix, s > 0. In [Gir84] it is shown that under some conditions with
probability 1

lim
n1,n2→∞

[
b(z, α)−m−1TrC(z, α)

]
= 0.

Using the proof of Theorem 3.1 we get that under some conditions

m−1Tr R̂1

[
R̂1t + R̂2

]−1

=
∫ ∞

0

dµn (x,R1, R2)

α + t
1+tmn−1

1 bm(t,α)
+ x

{
1 + (α− 1) mn−1

2 + bm(t,α)

1+tmn−1
1 bm(t,α)

} ,

where

bm (t, α) = m−1Tr R̂1

[
R̂1t + R̂2

]−1

.

We transform this expression as

bm (t, α)
{

1 + (α− 1)mn−1
2 +

bm (t, α)
1 + tmn−1

1 bm (t, α)

}

=
∫ ∞

0

dµn (x,R1, R2){
1 + (α− 1)mn−1

2 + bm(t,α)

1+tmn−1
1 bm(t,α)

}−1 [
α + t

1+tmn−1
1 bm(t,α)

]
+ x

.

Now replace t by the function θ (t) which is the nonnegative solution of the equation

{
1 + (α− 1)mn−1

2 +
bm (θ (t) , α)

1 + tmn−1
1 bm (θ (t) , α)

}−1 [
α +

θ (t)
1 + tmn−1

1 bm (θ (t) , α)

]
= t.

Then we obtain



G6 = bm (θ (t) , α)
{

1 + (α− 1) mn−1
2 +

bm (θ (t) , α)
1 + tmn−1

1 bm (θ (t) , α)

}
.

From [Gir44, p.218], [Gir54] we get under t > 0

p lim
n1,n2→∞

[
G6 −

∫ ∞

0

dµn (x,R1, R2)
t + x

]
= 0,

or

p lim
n1,n2→∞

[
G6 −m−1TrR1 [R1t + R2]

−1
]

= 0.
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