
5. G5-ESTIMATOR OF SMOOTHED NORMALIZED SPECTRAL FUNCTION OF

SYMMETRIC MATRICES

Let µn (x) be a normalized spectral function of a covariance matrix Rm. The G2-
estimator for Stieltjes’ transform of this function is equal to (see Section 2.2)
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Using this estimator we can try to find a consistent estimator of µn (x) . But in this
case two questions arise:
1). Will the estimator G2 be equal to Stieltjes’ transform of a distribution function?
2). The spectral function µn(x) may have a discontinuity. Therefore it is very difficult to
use the inverse formula for Stieltjes’ transform for finding µn(x), using the G2-estimator.
To overcome these difficulties we can use the so-called smoothed normalized spectral
functions
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It can be shown that
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Therefore we call µn (x, ε) a smoothed normalized spectral function. Consider the
estimator
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It is easy to prove that under the conditions of Theorem 2.1 such estimator G5 of
µn(x, ε) is consistent: with probability one, for any ε > 0 and x
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{G5 (A, B, x, ε)− µn (x, ε)} = 0.


