
4. CLASS OF G4 -ESTIMATORS FOR THE TRACES OF THE POWERS

OF COVARIANCE MATRICES

We recall that the G2-estimator is the most important in general statistical analysis.
With its help, we can find G4-estimators of the traces of analytic functions of covariance
matrices. Let us show that with the help of the G2-estimator we can find G4-estimators
of the traces of the powers of covariance matrices. Obviously

m−1
n Tr Rk

mn
= (−1)k (k!)−1 ∂k

∂tk
m−1

n Tr [I + tRmn ]−1
t=0 ; k = 1, 2, ....

Let us recall too that the G2-consistent estimator for the traces of resolvents of

covariance matrices is found in [Gir39]: G2 = m−1
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positive solution of the main equation of general statistical analysis
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Using these estimators after certain simple calculations we find G4-estimators:
The G
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n TrRmn is equal to m−1Tr R̂mn , which is evident. However,
to obtain the next estimators of the powers of covariance matrices some calculations
are needed.
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4.1. G
1/2
4 -estimator of the square root of covariance matrices

One of the problems of simulation of complex systems is the problem of simulating
on computers a normally distributed random vector ~ξm with zero mean and given
covariance matrix Rmn . Usually one solves such a problem in the following way: first
with the help of pseudorandom variables one simulates the standard Normal vector ~ηm

of dimension m. Then one represents the covariance matrix in the following form:

Rmn = TmnTT
mn

,

where Tmn is the upper (or lower) triangular matrix. After this initial preparation we
can take pseudorandom vector ~ξm = Tmn~ηm or ~ξm =

√
Rmn~ηm. Note that the matrix

Rmn , as a rule, is unknown. Therefore, we must use a G-estimator of such a matrix.
Let us use the integral
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where x > 0 is a real parameter. Similarly, we have for the square root of the covariance
matrix
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Hence , using the G2–estimator we can find
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where θ̂ (t) is a positive solution of the equation
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In [Gir55] it is proven that estimator G
(1/2)
4 is consistent and asymptotically Normal.

Theorem 4.3. If the G-condition lim supn→∞mnn−1 < 1 is fulfilled, components
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