
2. G2-ESTIMATOR OF THE REAL STIELTJES TRANSFORM OF THE

NORMALIZED SPECTRAL FUNCTION OF COVARIANCE MATRICES

Consider the main problem of the statistical analysis of observations of large dimension:
the estimation of Stieltjes’ transforms of the normalized spectral functions

µmn
(x) = m−1

n

mn∑

k=1

χ(λk < x)

of the covariance matrices Rmn from the observations of the random vector ~ξ with
the covariance matrix Rmn

, where λk are eigenvalues of matrix Rmn
. Note that many

analytic functions of the covariance matrices that are used in multivariate statistical
analysis can be expressed through the spectral function µmn

(x). For example, the
function

m−1
n Trf(Rmn

) =
∫ ∞

0

f(x) dµmn
(x),

where f(x) is an analytical function.
The function

ϕ(t, Rmn
) =

∫ ∞

0

(1 + tx)−1 dµmn
= m−1

n Tr(I + tRmn
)−1, t > 0,

is called Stieltjes’ transform of the function µmn(x). A consistent estimator of Stieltjes’
transform ϕ(t, Rmn) is equal to: G2(t, R̂mn) = ϕ(θ̂n(t), R̂mn), where θ̂n(t) is the positive
solution of the equation

θ(1−mn(n− 1)−1 + mn(n− 1)−1ϕ(θ, R̂mn)) = t, t ≥ 0.

It is obvious that the positive solution of this equation exists and is unique as t ≥
0, mn(n− 1)−1 < 1.

Let the independent observations ~x1, ..., ~xn of the mn-dimensional random vector ~ξ
be given. Assume that the G-condition is fulfilled:

lim sup
n→∞

mnn−1 < 1, 0 < c1 ≤ λi ≤ c2 < ∞, i = 1, ...,mn,

and let the components of the vector (η1k, ..., ηmnk)T = R
−1/2
mn (~ξ−E~ξ) be independent,

and
sup

n
sup

k=1,...,n
sup

i=1,...,mn

E|ηik|4+δ < ∞, δ > 0.

Then ([Gir38–41], [Gir43–45], [Gir54], [Gir58], [Gir69], [Gir76], [Gir84])

lim
n→∞

P {[G2(t, R̂mn)− ϕ(t, Rmn)]
√

(n− 1)mn an(t) + cn(t) < x}

= (2π)−1/2

∫ x

−∞
e−y2/2dy,

as t > 0, where an(t) and cn(t) are some bounded functions.



2.1. G2-estimator of a complex Stieltjes transform of the normalized spectral
function of covariance matrices

Here, the G2(z)-consistent estimator for the trace of the resolvent of covariance matrices
(Stieltjes’ transform)

m−1
n Tr

(
R̂mn − zImn

)−1

, z = t + is, s > 0

is given as

G2(z) = z−1θ̂ (z)m−1
n Tr

{
R̂mn

− θ̂ (z) Imn

}−1

,

where θ̂ (z) is the measurable complex solution of the equation

θ̂ (z)
1
n

Tr
{

R̂mn
− θ̂ (z) Imn

}−1

−
(
1− mn

n

)
+

θ̂ (z)
z

= 0.

Theorem 2.1. [Gir45] Suppose that ~x1, . . . , ~xn is a random vector sample,

~xk = R1/2
mn

~ξk + ~a, E ~ξk = 0, E ~ξk
~ξT
k = Imn , ~ξT

k = {ξik, i = 1, ...,mn } ,

for any positive defined matrix Am whose eigenvalues are bounded by a certain constant

lim
n→∞

max
k=1,...,n

n−1E
∣∣∣(~xk − ~a)T

A (~xk − ~a)− n−1TrRmnA
∣∣∣ = 0,

λi(Rmn) < c1 < ∞, i = 1, ..., mn,

lim inf
n→∞

mnn−1 > 0, lim sup
n→∞

mnn−1 < ∞.

Then with probability one for every S > 0 and T > 0

lim
n→∞

sup
0<c≤Imz≤S,
|Rez|≤T

∣∣∣G2 (z)−m−1
n Tr {Rmn − zImn}−1

∣∣∣ = 0,

for some c > 0.

2.2. Modified G2-estimator

Thus, under some conditions,

lim
n→∞

sup
0<c≤Imz≤S,
|Rez|≤T

∣∣∣G2 (z)−m−1
n Tr {Rmn − zImn}−1

∣∣∣ = 0,

where c > 0 is a certain constant (which usually is not small). However, we need to
know the trace of the resolvent of the covariance matrix for all s > 0. Since function
m−1

n Tr {Rmn − zImn}−1 is analytical in z, Imz > 0, we can use many methods for its
analytical continuation. For example we can use the Fourier transform and consider
the following modified G2 estimator:

G2 (A, B, u + iv) = i
∫ B

0

{
e|sp|

π

∫ A

−A

ImG2 (z) e−itpdt

}
e−p(v−iu)dp, v > 0,



where s > c > 0.
It is easy to prove that the following assertion is valid:

Theorem 2.2 [Gir45] If the conditions of Theorem 2.1 are fulfilled, then with proba-
bility one, for every ε > 0,

lim
B→∞

lim
A→∞

lim
n→∞

sup
v, 0<ε≤u

∣∣∣G2 (A,B, u + iv)−m−1
n Tr {Rmn

− (u + iv) Imn
}−1

∣∣∣ = 0.

2.3. G2-estimator for the trace of the resolvent of empirical covariance
matrix when Lindeberg’s condition is not fulfilled

Let ~x1, . . . , ~xn be the sample of independent observations of a random vector,

~xk = R1/2
mn

~ξk + ~a, E ~ξk = 0, E ~ξk
~ξT
k = Imn

, ~ξT
k = {βkξik, i = 1, ..., mn} ,

where βk are independent and do not depend on variables ξik.
For this case, the G-equation for the trace of resolvent has the following form [Gir69]

b(z) = Em−1
n Tr

[
R̂mn − zImn

]−1

= m−1
n

mn∑
p=1

1

λpn−1
n∑

i=1

E β2
i

γβ2
i
q(z)+1

− z
+ εn,

where limn→∞ εn = 0 and q(z) is satisfies the equation

q(z) = m−1
n

mn∑
p=1

λp

λpn−1
n∑

i=1

E β2
i

γβ2
i
q(z)+1

− z
, z = t + is, γ =

mn

n
.

Let us express function q(z) through function b(z). One has

q(z)n−1
n∑

i=1

E
β2

i

γβ2
i q (z) + 1

= m−1
n

mn∑
p=1

λpn
−1

n∑
i=1

E β2
i

γβ2
i
q(z)+1

λpn−1
n∑

i=1

E β2
i

γβ2
i
q(z)+1

− z

= 1 + m−1
n

mn∑
p=1

z

λpn−1
n∑

i=1

E β2
i

γβ2
i
q(z)+1

− z

= 1 + zb (z) .

Hence, in this case, the G2- estimator has the following form

G2(z) = b̂n(θ(z)z)θ(z),

where θ(z) is any measurable solution of the equation

n−1
n∑

i=1

E
β2

i

γβ2
i q (θ(z)z) + 1

= θ(z)



and q(z) is any measurable solution of the equation

q(z)n−1
n∑

i=1

E
β2

i

γβ2
i q (z) + 1

= 1 + zb̂n (z) ,

with

b̂n (z) = n−1Tr
[
R̂mn − Iz

]−1
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