
19. QUASI-INVERSION METHOD FOR SOLVING G-EQUATIONS

Suppose that f(x) is a Borel function in Rmn having partial derivatives of the third or-
der. Let ~x1, . . . , ~xn be independent observations of an mn-dimensional vector ~ξ, E ~ξ =
~a. We need a consistent estimator of the value f(~a). Many problems of multivariate
statistical analysis can be formulated in these terms. If f is a continuous function we
take

~̂a = n−1
n∑

i=1

~xi

as the estimator of ~a. Then, obviously, for fixed m, p limn→∞ f(~̂a) = f(~a). But the
application of this method in solving practical problems is unsatisfactory due to the
fact that the number of observations n necessary to solve the problem with a given
accuracy increases sharply with m. It is possible to reduce significantly the number
of observations n by making use of the fact that under some conditions, including
limn→∞mn−1 = c, 0 < c < ∞, the relation

p lim
n→∞

[f(~̂a)−E f(~̂a)] = 0 (19.1)

holds. We call (19.1) and similar identities the basic relations of the G-analysis of large
dimensional observations. The methods of estimating functions of some characteristics
of random vectors would be studied by this method.

19.1. G-equations for estimators of differentiable functions of unknown
parameters

Suppose that vector ~ξ has a Normal distribution N (~a,Rmn) and consider the functions

u (t, ~z) = E f
(
~z + ~a + ~νt1/2n−1/2

)
, (19.2)

where t > 0 is a real parameter, ~z ∈ Rmn , and ~ν is a Normal N(0, Rmn) random vector.
Suppose that the integrals

E
∂2

∂zi∂zj
f

(
~z + ~a + ~νt1/2n−1/2

)

exist. Let us find the differential equation for the function u(t, ~z). We note that ~ν(t +
∆t)1/2 ≈ ~νt1/2 +~ν1(∆t)1/2, where ∆t ≥ 0, ~ν1 is a random vector which does not depend
on the vector ~ν and ~ν ≈ ~ν1. Then

∂

∂t
u (t, ~z) = lim

∆t↓0
1

∆t
E

[
f

(
~z + ~a + n−1/2

(
~νt1/2 +~ν1(∆t)1/2

))

−f
(
~z + ~a + n−1/2~νt1/2

)]
.

Then, by using the expansion of the function f in a Taylor series

f
(
~a + ~h

)
− f(~a) =

s∑

k=0

(
mn∑

i=1

∂

∂ai
hi

)k

f(~a) + o
(∥∥∥~h

∥∥∥
)

we obtain that the functions u (t, ~z) satisfy the equation
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∂

∂t
u (t, ~z) = Au (t, ~z) ; A =

1
2n

mn∑

i,j=1

rij
∂2

∂zi∂zj
(19.3)

u (1, ~z) = E f
(
~z + ~̂a

)
, u (0, ~z) = f (~z + ~a) ,

where rij are the entries of the matrix Rmn . Suppose that the random vector ~ξ has

arbitrary distribution with Rmn = E
(
~ξ − ~a

)(
~ξ − ~a

)T

. Let

αn

(
kn−1, ~z

)
= E f

{
~z + ~a + n−1

k∑
p=1

(~xp −E ~xp)

}
,

un (t, ~z) = αn

(
kn−1, ~z

)
, kn−1 ≤ t < (k + 1)n−1; k = 1, . . . , n,

lim
n→∞

nE
∫ 1

0

(1− t2)

[
1
n

mn∑

i=1

(~xi − ~ai)
(

∂

∂zi

)]3

× f

{
~z + ~a+

1
n

k−1∑

i=1

(~xi − ~ai) +
t

n
(~xk − ~ak)

}
dt = 0.

Then, by using the expansion of the function f in a Taylor series, we obtain

n

[
αn

(
k

n
, ~z

)
− αn

(
k − 1

n
, ~z

)]

=
1
2n

mn∑

i,j=1

rij
∂2

∂zi∂zj
αn

(
k − 1

n
, ~z

)
+ εn,

(19.4)

where limn→∞ εn = 0.

From equation (19.4) we have

un (t, ~z) = un (0, ~z) +
∫ t

0

1
2n

mn∑

i,j=1

rij
∂2

∂zi∂zj
un (y, ~z) dy + εn. (19.5)
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19.2. G-equation of higher orders

Let f(~x), ~x ∈ Rmn be the Borel function with mixed particular derivatives of order p

inclusively; let ~ξ, E ~ξ = ~a be a certain mn-dimensional random vector and let ~x1, . . . , ~xn

be independent observations of the vector ~ξ.
If, for every ~z ∈ Rmn and k = 1, . . . , n

lim
n→∞

nE
∫ 1

0

(1− t)p−1

(p− 1)!

(
1
n

mn∑

i=1

(xik − ai)
∂

∂zi

)p

× f

(
~z + ~a +

1
n

k−1∑

i=1

(~xi − ~a) +
t

n
(~xk − ~a)

)
dt = 0,

sup
~z∈Rmn

E

∣∣∣∣∣f
(

~z + ~a +
1
n

k−1∑

i=1

(~xi − ~a)

)∣∣∣∣∣ < ∞,

then

ϕn (t, ~z) = f (~z + ~a) +
∫ t

0

Bϕn (y, ~z) dy + εn;

ϕn (1, ~z) = E f
(
~z + ~̂a

)
,

(19.6)

where

ϕn (t, ~z) = E f (~z + ~a + ~νk) ,
k

n
≤ t <

k + 1
n

; k = 1, . . . , n− 1,

~νk =
1
n

k∑

i=1

(~xi − ~a),

B =
p−1∑

l=1

1
l!
E

(
1
n

mn∑

i=1

(xi1 − ai)
∂

∂zi

)l

.

19.3. G-equation for functions of the empirical vector of expectations
and the covariance matrix

Let us find the G-equations for the differentiable functions ϕn

(
~̂a, R̂mn

)
of the empirical

vector ~̂a and the covariance matrix R̂mn which are obtained by independent normally
distributed N (~a,Rmn) observations ~x1, . . . , ~xn.

Consider the functions

un (t, ~z,Xmn) = ϕ
{
~a + ~z + R1/2

mn
~ηnn−1/2, Rmn + Xmn

+R1/2
mn

k∑
s=1

(
1

n− 1
~ηs~η

T
s − I

)
R1/2

mn

}
,

where ~ηs are independent mn-dimensional random Normal law N(0, I) vectors , and
Xmn = (xij) is a matrix of the parameters of the same order as the matrix Rmn .

If the functions un (t, ~z, Xmn) can be represented as

3



un

(
k

n
, ~z, Xmn

)
− un

(
k − 1

n
, ~z, Xmn

)
= Aun

(
k − 1

n
, ~z, Xmn

)
+

εn

n
,

where

A =
1
2n

mn∑

i,j,p,l=1

E
(

R1/2
mn

~ηs~η
T
s − I

n− 1
R1/2

mn

)

ij

×
(

R1/2
mn

~ηs~η
T
s − I

n− 1
R1/2

mn

)

pl

∂2

∂xij∂xpl
+

1
2n

mn∑

i,j=1

rij
∂2

∂zi∂zj
;

then we obtain the equation

ψn (t, ~z, Xmn) = ϕ (~z + ~a,Xmn + Rmn)

+
∫ t

0

Aψn (y, ~z, Xmn
) dy + εn,

ψn (1, ~z, Xmn
) = Eϕ

(
~z + ~̂a,Xmn

+ R̂mn

)

for the functions

ψn (t, ~z,Xmn) = un

(
k

n
, ~z,Xmn

)
;

k

n
≤ t <

k + 1
n

.

19.4. G-equation for functions of empirical expectations

Let

un

(
kn−1, ~z

)
= E f

(
~z + ~a + n−1

k∑
p=1

(~xp −E ~xp)

)
,

ψn (t, ~z) = un

(
k

n
, ~z

)
,

k

n
≤ t <

k + 1
n

; k = 1, . . . , n.

If the limit exists,

lim
n→∞

{
n

[
u

(
k

n
, ~z

)
− u

(
k − 1

n
, ~z

)]
− θ

(
u

(
k

n
, ~z

))}
= 0,

where θ(y) is a certain continuous function on [0,1], then for the functions ψn(t, ~z) we
have

ψn (t, ~z) = ϕ (~z + ~a) +
∫ t

0

θ {ψn (y, ~z)}dy + εn.

We deduce the finding of G-estimators of the functions f (~a) to solution of the inverse
problem for equation (19.5). The latter consists of finding αn (0, z) by the function
αn (1, z) , which is replaced by the function f

(
~z + ~̂a

)
based on observations of the

random vector ~ξ. Of course, the solution of the inverse problem with such a replacement
cannot exist in the class of functions W

(0,2)
2 . Therefore, it appears expedient to find a

generalized solution of the estimation problem of function f (~a) .
Let ψ (~x) ∈ L2 and let the functional
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I (ϕ) =
∫

D

|αn (1, ~x, ϕ (·))− ϕ (~x)|d~x (19.7)

be determined by the functions ϕ (~x) ∈ W
(0,2)
2 . Here D is a domain on m-dimensional

Euclidean space, which is bounded by the piecewise smooth surface S, and αn (1, ~x, ϕ (·))
is the solution of the equation

αn (t, ~x, ϕ (·)) = ϕ (~x) +
∫ t

0

1
2n

m∑

i,j=1

rij
∂2

∂xi∂xj
αn (u, ~x, ϕ (·)) du + o (1) ,

at the point t = 1. The function ϕ̂ (~x) is the solution of the inverse problem if

inf
ϕ(·)∈W

(0,2)
2

I (ϕ) = I (ϕ̂) .

To solve this problem, we proceed as follows. First, we solve the direct problem

αn (t, ~x, ϕ (·)) = ϕ (~x) +
∫ t

0

Aαn (u, ~x, ϕ (·)) du + o (1) ,

where

A =
1
2n

m∑

i,j=1

rij
∂2

∂xi∂xj
, αn (u, ~x, ϕ (·)) = 0, ∈ S.

Here S is the piecewise smooth boundary of a connected domain D and

αn (1, ~x, ϕ (·)) = ψ (~x)

is a given function. Then we have an approximate value for the initial condition of the
function ϕ(x). It is quite possible that, in general, such a problem has no solution for the
given function. Therefore, it is appropriate to solve the inverse problem approximately
with the help of the so-called quasi-inversion method. Thus, we consider the following
equation

∂u (t, ~z)
∂t

= Aδu (t, ~z) , u (1, ~z) = αn (1, ~z) (19.8)

instead of equation (19.5); here Aδ is some operator similar in some sense, to the
operator A and such that the solution of equation (19.8) is stable. We can choose

Aδ = A + δA2, δ > 0.
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19.5. Estimator G19 of regularized function of unknow parameters

By obtaining the solution of equation (19.6), we can apply the spectral theory of the
operator Aδ. Its spectrum is, however, continuous. Therefore, it would be better to
replace operator A by an operator Aε, such that its spectrum is discrete and whose
eigenfunctions form the complete orthonormal basis in the Hilbert space L2. For exam-
ple, instead of such an operator A, we can choose

Aε = A + εq (~z) + δ [A + εq (~z)]2 , ε, δ > 0,

where q (~z) is any measurable function such that the operator A + εq (~z) , ~z ∈ Rm

satisfies the above mentioned condition. From the operator spectral theory, it follows
that instead of function q (~z) we can choose any measurable function such that

lim
‖~z‖→∞

q (~z) = ∞.

Let λk (ε) and ϕkε (~z) , k = 1, 2, ... denote the eigenvalues and eigenfunctions of the
operator A + εq (~z) , ~z ∈ Rm, respectively Now we can give the main form of G19-
estimators of function f (~a) ;

G19 = exp
{
Aδ − εA2

δ

}
f

(
~̂α + ~z

)
~z=0

=
∞∑

k=0

exp
{
λk (ε)− δλ2

k (ε)
} ∫

f
(
~̂α + ~z

)
ϕk (~z) d~zϕk

(
~0
)

,

where

Aε =
1
2

m∑

i,j=1

∂2

∂zi∂zj
E

(
~̂α− ~α

)
i

(
~̂α− ~α

)
j
+ εq (~z) ; ε > 0, δ > 0,

and q (~z) is any continuous function satisfying the condition

lim inf
n→∞

lim
‖~z‖→∞

q (~z) = ∞.
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