
14. G14 -ESTIMATOR OF REGULARIZED DISCRIMINANT FUNCTION

If matrix R is singular or ill-conditioned, then instead of the Mahalanobis distance α,
its regularized analog is considered

αε = (~a1 − ~a2)
T [εI + R]−1 (~a1 − ~a2) , ε > 0.

The regularized distance has more useful properties than the distance α. To prove
asymptotic normality of G-estimators, it is not necessary that the random vectors ~ξ and
~η be normally distributed. As was mentioned in the previous chapters, the estimator

Gε =
(
~̂a1 − ~̂a2

)T [
εI + R̂

]−1 (
~̂a1 − ~̂a2

)
, ε > 0,

with empirical mean vectors and the covariance matrix ~̂a1, ~̂a2, R̂, is inappropriate for
solving multivariate classification problems. Indeed, with the increase of m, the number
of components of the vectors ~ξ and ~η, the number of observations needed for obtaining a
given accuracy in the Mahalanobis distance estimation grows rapidly. In this section we
assert that under some conditions, there exists an asymptotically Normal G-estimator
for the regularized discriminant function, provided that

lim sup
n1,n2→∞

[
mn−1

1 + mn−1
2

]
< ∞.

Let ~xi, ~yj ; i = 1, . . . , n1; j = 1, . . . , n2 be independent observations of m-dimensional
independent random vectors ~ξ and ~η respectively. We call the expression

G14 (~x) =
{

~x− 1
2
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the G14–estimator for the regularized discriminant function. Here θn1,n2 is the nonneg-
ative solution of the equation [Gir54, p.615]

1− kn1,n2 + kn1,n2θ
−1
n1,n2

TrR̂
[
θn1,n2I + R̂

]−1

= εθn1,n2 ,

kn1,n2 = m [n1 + n2 − 2]−1

It can be seen that there exists a unique nonnegative solution of this equation.

Theorem 14.1. [Gir54, p.615] Let the conditions of Theorem 13.1 be satisfied. Then

lim
n1,n2→∞

max
i=1,2

P
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2
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}T

(εI + R)−1 (~a1 − ~a2)

]

×
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}
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∫ x

−∞
exp

{−y2/2
}

dy,

where ~ξi is an observation which does not depend on ~xi, ~yj ; i = 1, ..., n1; j = 1, ..., n2,
distributed as N {~a1, R} or N {~a2, R} and Vm are certain constants.
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