
11. G11-ESTIMATOR OF THE MAHALANOBIS DISTANCE

Let ~xi, ~yj ; i = 1, ..., n1; j = 1, ..., n2 be independent observations of m-dimensional
random vectors ~ξ = ~a1 +

√
R~µ, ~µT = {µi, i = 1, . . . ,m} and ~η = ~a2 +

√
R~ν, ~νT =

{νi, i = 1, . . . , m} respectively and suppose that random variables µi, νi, i = 1, . . . ,m
are independent for every n. As the empirical mean value vectors and the covariance
matrix R, we take:
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We shall refer to the expression
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as the G11-estimator of the Mahalanobis Distance.

Theorem 11.1. [Gir54, p.598] Let n1 + n2 − 2 > m,
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