
10. G10-ESTIMATOR OF THE SOLUTION OF A REGULARIZED

DISCRETE KOLMOGOROV-WIENER FILTER WITH KNOWN FREE VECTOR

The discrete analog of a regularized Kolmogorov-Wiener filter has the form

(εIm + Rm) ~ϕ(t) = ~b(t),

where ε > 0 is a parameter of regularization,

Rm =
{
m−1R

(
sm−1, km−1

)}m

k,s=1
; ~bT (t) =

{
Q

(
t, sm−1

)
, s = 1, . . . , m

}
,

~ϕT (t) =
{
ϕ

(
t, km−1

)
, k = 1, ..., m

}
,

R (x, y) = E [α (x)−Eα (x)] [α (y)−Eα (y)] ,

Q (x, y) = E [α (x)−Eα (x)] [β (y)−Eβ (y)] .

Here α (x) , β (y) are random processes. The estimator ˆ~ϕ(t) =
(
εI + R̂m

)−1 ˆ~b(t) con-
verges in probability to ~ϕ(t) when n1, n2 →∞. Here

R̂ =
{

m−1R̂
(
sm−1, km−1

)}m

k,s=1
, ~ϕT (t) =

{
ϕ

(
t, km−1

)
, k = 1, ...,m

}
;

~̂b
T

(t) =
{

Q̂
(
t, sm−1

)
, s = 1, . . . , m

}
,

R̂ (x, y) = (n1 − 1)−1
n1∑

k=1

[αk (x)− α̂ (x)] [αk (y)− α̂ (y)],

Q̂ (x, y) = (n2 − 1)−1
n2∑

k=1

[αk (x)− α̂ (x)]
[
βk (y)− β̂ (y)

]
,

and αk (x) , βk (y) are independent observations of α (x) , β (y) . Applying the G-
analysis technique, which is described in [Gir44, Gir54, Gir69, Gir84], we can obtain an
estimator of ~ϕ(t), which approaches in probability ~ϕ(t), provided that

lim
n1→∞

mn−1
1 < 1; lim

n1→∞
mn−1

2 < ∞

This estimator will be referred to as the G10-estimator:

~G10 = ε−1
(
I + θ̂R̂m

)−1
~b(t), (10.1)

where θ̂ is a nonnegative solution of the equation

θ

[
1− γn1 + γn1m

−1Tr
(
θI + R̂m

)−1
]

= ε−1, ε > 0; γn1 = mn−1
1 < 1. (10.2)



Theorem 10.1. [Gir44, Gir54, Gir69, Gir84] Assume that

~xk :=
{
αk

(
sm−1

)
; s = 1, ..., m

}T
= R1/2

m ~ηk + ~a,

{
~ηT

k = {ηik; i = 1, ...,m}} ; k = 1, ..., n

R
1/2
m is a symmetric matrix, t is fixed, n1 = n2 = n, random variables ηik; i =

1, ..., m; k = 1, ..., n are independent for every n, and

E ηik = 0; E η2
ik = 1; i = 1, . . . ,m; k = 1, . . . , n

lim
n→∞

mn−1 < 1, λi (R) ≤ c < ∞, the vector ~b is known,

sup
m

[
~bT~b + ~cT~c

]
< ∞, ε > 0,

where ~c ∈ Rm, λi (R) are the eigenvalues of the matrix Rm. Then

p lim
n→∞

[
~cT G10 − ~cT ~ϕ

]
= 0.

10.1. G10-estimator for the solution of a Kolmogorov-Wiener filter with
unknown vector

Consider the discrete analog of a regularized Kolmogorov-Wiener filter

~b(t) = (εI + Rm) ~ϕ(t), (10.3)

where ε > 0 is a parameter of regularization,

Rm =
{
m−1R

(
sm−1, km−1

)}m

k,s=1
; ~bT (t) =

{
Q

(
t, sm−1

)
, s = 1, ..., m

}
,

~ϕT (t) =
{
ϕ

(
t, km−1

)
, k = 1, ..., m

}
,

R (x, y) = E [α (x)−Eα (x)] [α (y)−Eα (y)] ,

Q (x, y) = E [α (x)−Eα (x)] [β (y)−Eβ (y)] .

For this case, when free vector ~b(t) is unknown, the estimator vector

~ϕT (t) = {ϕ (
t, km−1

)
, k = 1, . . . , m} will be referred to as the ~̃G10 -estimator. It has

the form

~̃G10 = ε−1

{
1 + εθ̂

[
γn − n−1Tr

{
I + θ̂R̂m

}−1
]}(

I + θ̂R̂m

)−1
~̂b, (10.4)

where θ̂ is a nonnegative solution of the equation



θ

[
1− γn + γnm−1Tr

(
θI + R̂m

)−1
]

= ε−1, ε > 0; γn = mn−1 < 1, (10.5)

R̂m = n−1
n∑

k=1

R1/2
m ~ηk~ηkR1/2

m −
(
~̂x− ~a

)(
~̂x− ~a

)T

; ~̂x = n−1
n∑

k=1

~xk,

~̂b = n−1
n∑

k=1

(yk − ŷ)
(
~xk − ~̂x

)
; ŷ = n−1

n∑

k=1

yk,

~xk :=
{
αk

(
sm−1

)
; s = 1, ...,m

}T
= R1/2

m ~ηk + ~a; yk := βk (t) = ξk + p,

R
1/2
m is a symmetric matrix, t is fixed, n1 = n2 = n, the vectors

{
~ηT

k = {ηik; i = 1, ..., m} ; ξk

}
; k = 1, ..., n

are independent for every n, random variables ηik; i = 1, ...,m are independent; ξk; k =
1, ..., n are also independent, and

E ηik = 0; E η2
ik = 1; E ξk = 0; E ξk

(√
Rm~ηk

)
ik

= bi; i = 1, ..., m; k = 1, ..., n.

Theorem 10.3. [Gir84, p.298] If

lim sup
n→∞

mn−1 < 1,

λi (Rm) ≤ c < ∞; i = 1, ...,m

sup
m

[
~bT~b + ~cT~c

]
< ∞, ε > 0

sup
n

max
i=1,...,m; k=1,...,n

E |ηik|4 < ∞,

sup
n

max
k=1,...,n

max
s=1,...,m

λs

{
E

[
ξk

√
Rm~ηk −~b

] [
ξk

√
Rm~ηk −~b

]T
}

< ∞,

then for every ε > 0

p lim
n→∞

[
~cT ~̃G10 − ~cT ~ϕ

]
= p lim

n→∞

[
~cT ~̃G10 − ~cT (Iε + Rm)−1~b

]
= 0.
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