
1. G1-ESTIMATOR OF GENERALIZED VARIANCE

Let the independent observations ~x1, ..., ~xn of the mn-dimensional random vector ~ξ, n >
mn be given,

R̂ := (n− 1)−1
n∑

k=1

(~xk − ~̂x)(~xk − ~̂x)T, ~̂x = n−1
n∑

k=1

~xk.

The expression det R is called a generalized variance. If the vectors ~xi, i = 1, . . . , n are
independent and distributed according to the multidimensional Normal law N(~a,R),
then

det R̂ ≈ [det R](n− 1)−m
n−1∏

i=n−m

χ2
i ,

where χ2
i are independent random variables with the χ2-distribution and i degrees of

freedom. In the general case, the distribution of det R̂ is intractable, and therefore
finding a consistent estimator for detR is a very complicated problem. It is proved (see
[Gir39–41], [Gir43–45], [Gir53–55], [Gir 69], [Gir75]), that under certain conditions the
G-estimators for c−1

n ln det R equal

G1(R̂) := c−1
n {ln det R̂ + ln[(n− 1)m(Am

n−1)
−1n(n−mn)−1},

where Am
n−1 = (n− 1)...(n−m), cn is a sequence of constants such that

lim
n→∞

c−2
n ln[n(n−mn)−1] = 0.

For every value n > mn, let the mn-dimensional random vectors ~x
(n)
1 , ..., ~x

(n)
n be inde-

pendent and identically distributed with a mean vector ~a and nondegenerate covariance
matrices Rmn . For a certain δ > 0

sup
n

sup
i=1,...,n

j=1,...,mn

E |x̃(n)
ij |4+δ < ∞,

where ~̃x
(n)

ij are the components of the vector ~̃xi = R
−1/2
mn (x(n)

i − ~a), and

lim
n→∞

(n−mn) = ∞, lim
n→∞

nm−1
n ≥ 1;

and for each value of n > mn, let the random variables x̃
(n)
ij , i = 1, ..., n, j = 1, ...,mn

be independent. Then (see [Gir39–41], [Gir43–45], [Gir53–55], [Gir 69], [Gir75])

p lim
n→∞

[G1(R̂mn)− c−1
n ln det Rmn ] = 0,

lim
n→∞

P{[cnG1(R̂mn)− ln det Rmn ][−2 ln(1−mnn−1)]−1/2 < x}

= (2π)−1/2

∫ x

−∞
e−y2/2 dy.
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