
CHAPTER 14

Ten years of General Statistical Analysis.

(The main G-estimators of General Statistical
Analysis)

The first estimators of General Statistical Analysis appeared ten years ago in [Gir39].
In this analysis we try to find new estimators under two main assumptions. Firstly, we
do not require the existence of the density of observations; e.g. we do not require the
observations to have a Normal distribution. Secondly, we develop this analysis when
the number of parameters can increase together with the number of observations or
the observation vector’s dimension is comparable in magnitude with the sample size.
It is further assumed that the dimension of the parameter space involved in the model
remains constant with respect to n even when the dimension mn of the random vectors
increases. These three assumptions have a great significance. Do not confuse this
analysis with “Generalized Statistical Analysis ” or “Global Statistical Analysis”, etc.
based on additional information on distribution of observations. General statistical
analysis has greatly influenced physics, especially nuclear physics, control theory, linear
stochastic programming and so on. Indeed, this analysis inspired the physicist Eugene
Wigner to develop the so-called random matrix physics. Random matrix physics has
developed so deeply now that we see the inverse process: random matrix physics begins
to enrich the General Statistical Analysis. Therefore, we include certain results obtained
by physicists who are working in random matrix physics and in dynamical systems with
random errors. Let us point out the principal procedures for General Statistical Analysis
(GSA). As has been observed in many publications, the large order of a system or the
large dimension of observed vectors requires a large sample size. For this reason one
needs the most accurate estimators. In mathematical statistics, most results are relevant
only when the dimension is fairly small. For large dimensions, common techniques are
inefficient. Hence, the study of high dimensional problems is important.

In many applications of statistics, e.g. econometrics, environmental statistics, eco-
logical statistics, taxonomy, biostatistics, etc. investigators often encounter data sets
where the number of measured characteristics is large and the size of available data
is also substantial. As a result, the problem is very complex theoretically, as well as
computationally, because of the many parameters a feature which is sometimes called
the “curse of dimensionality”. Hence, there is a need to study rigorously methods which
will give efficient results under such circumstances. The standard methods of statistical
analysis usually require large amounts of computer time, and cannot be recommended
for use with large data sets or a large number of parameters. In many applications the
number of parameters to be estimated increases indefinitely with the sample size and
therefore the estimators are not “consistent” [Mar], [Wald].

Multivariate statistical analysis took a new turn when distributions of observations
and their dimensions started to be treated as arbitrary distribution functions and num-
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bers respectively. In applied problems, it is very difficult to verify whether the observed
random vectors have either a Normal distribution or an elliptically contoured distribu-
tion. Even under the assumption of such distribution, the joint densities of eigenvalues
and of the corresponding eigenvectors of empirical covariance matrices are complicated.
In fact they involve the Haar measure on the orthogonal group, the matrix hypergeo-
metric function, etc.

A new General Statistical Analysis is developed for these problems. We study a
complex system S, such that the number of parameters of the corresponding model
can increase together with the number of observations of this system. The importance
of this theory lies in showing how by using the observations on system S, one can
construct mathematical models (G-estimators) which in some sense approximate the
system S at a given rate. In this analysis the existence of the densities of the observed
random vectors and matrices is not needed, and the assumptions about the nature of
observations are quite general. However, the existence of several moments for their
components is required. We make the following assumptions (axioms) and introduce
some technical language that is appropriate for all of the following analysis.

AXIOM 1. A SEQUENCE OF RUNNING MODELS Mn OF A SYSTEM S IS GIVEN

We assume that the dimension mn of the model Mn of a system S can increase to-
gether with the number n of observations of a system S. Analysing many practical
problems we can confirm that indeed n depends on mn and cannot grow arbitrarily fast
as mn itself increases. It is supposed there is a sample of observations x1, x2, . . . , xn of
a system S. For theoretical analysis of models we consider the sequence of observations
x

(n)
1 , x

(n)
2 , . . . , x

(n)
n , n = 1, 2, . . . of systems S (random arrays). We assume that the

dimension m of theoretical vector-observations can change, when the number of obser-
vations itself increases, i.e. we assume that we have a sequence of models M1, M2, . . ..
We call this sequence the running models of system S.

AXIOM 2. THE DIMENSION OF AN ESTIMATED FUNCTIONAL ϕ(S)
OF A SYSTEM S IS FIXED

In GSA we do not estimate system S, because we apply this analysis when we have a
number of observations which is almost the same as the number of unknown parame-
ters. From the analysis of many statistical problems we can conclude that instead of
estimating the system S, we must estimate some functional ϕ(S). Therefore, in this
analysis, we assume that the dimension (the number of unknown parameters) of the
estimated characteristics ϕ(S) of the system S will not change, when the number mn

of parameters of the models Mn of the system S increases. This assumption is met in
many practical problems.

AXIOM 3. THE G-CONDITION (THE UNCERTAINTY PRINCIPLE) IS GIVEN

AND THE EXISTENCE OF THE “CRITICAL POINT” IS ASSUMED

The numbers of unknown parameters mn of running models and the number of obser-
vations n of system S satisfy the G-condition:

lim sup
n→∞

f(mn, n) ≤ h̄ < ∞,

where f(mn, n) is some positive function increasing in mn and decreasing in n. In most
cases f(x, y) can be chosen to be f(mn, n) = mnn−1. The constant h̄ depends on the
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system S and is called the “critical point”. This means that if

lim sup
n→∞

f(mn, n) > h̄

then it is impossible to find a consistent estimator of a certain functional ϕ(S) of system
S.

AXIOM 4. THE SEQUENCE OF PROBABILITY SPACES IS GIVEN.

THE PRINCIPLE OF RUNNING PROBABILITY SPACES (Ωn,Fn,Pn).

In the abstract theory of probability we require the existence of a unique probability
space (Ω,F ,P) and in the corresponding statistical theory of von Mises we require
the existence of a limit of empirical probability measures P̂n, so that in some sense
limn→∞ P̂n = P. In GSA we replace such condition with the condition where instead
of one abstract probability space we have a sequence of certain abstract probability
spaces (Ω,F ,Pm),m = 1, 2, .... The corresponding empirical measures P̂n(m) do not
converge in general, although some functional (such as expectation ~a =

∫
~xP̂n(m) (d~x)

or the covariance matrices
∫

(~x − ~a)(~x − ~a)T P̂n(m) (d~x) of random vectors) converges
to the same vector and matrix for the corresponding measure Pm of the sequence of
probability spaces. It is obvious that in this case we have wider application of our
theory.

AXIOM 5. A CERTAIN QUALITY CHARACTERISTIC EXISTS

The most important aim in our theory is to define a quality characteristic of the sequence
of models Mn(ω), which themselves differ in corresponding quality characteristics in the
strong theoretical analysis and which thereby allows us to consider smoothness quality.
We consider the following quality characteristic for Mm(ω)-models

I(S, h̄) = lim
n,m→∞,nm−1→h̄

sup
Pn:

∫
Ω

φ(S,ω) dPn(ω)=const

∫

Ω

‖ϕ(S)− ϕ(Mm(ω)‖dPn(ω),

where ‖ · ‖ is a distance between the system S and the model Mn(ω), Pn is a sequence
of probability measures, φ(Sn, ω) is a functional.

AXIOM 6. FEEDBACK CONTROL ALSO EXISTS

If the criterion quality characteristic I(S, h̄) exceeds a certain constant, which we call
the “confidential constant” then we have to reach one of two conclusions: 1). Our
probability measure is wrong. Then we can try to change Pm by P̂n(m), an empirical
measure. 2). Our model Mm is wrong. Then we have to find a new, more precise,
model Mm+1 and calculate new quality characteristic I(S, h̄) choosing measure Pm and
model Mm+1. Therefore, we have to include the feedback control C(S − Mm) in our
analysis.

Representing the axioms symbolically we say that GSA is specified if the following
seven objects are given

{
h̄, S, ϕ(S), Ω, F , Pn, I(S, h̄), C(S −Mm)

}
.

In the following sections we present a collection of the main estimators of G-analysis.
For some of them it is proven that under certain conditions they are consistent and
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sometimes even asymptotically Normal. Note that these estimators can significantly
decrease the number of observations required to solve many practical problems.

1. G1-ESTIMATOR OF GENERALIZED VARIANCE

Let the independent observations ~x1, ..., ~xn of the mn-dimensional random vector ~ξ, n >
mn be given,

R̂ := (n− 1)−1
n∑

k=1

(~xk − ~̂x)(~xk − ~̂x)T, ~̂x = n−1
n∑

k=1

~xk.

The expression det R is called a generalized variance. If the vectors ~xi, i = 1, . . . , n are
independent and distributed according to the multidimensional Normal law N(~a,R),
then

det R̂ ≈ [det R](n− 1)−m
n−1∏

i=n−m

χ2
i ,

where χ2
i are independent random variables with the χ2-distribution and i degrees of

freedom. In the general case, the distribution of det R̂ is intractable, and therefore
finding a consistent estimator for detR is a very complicated problem. It is proved (see
[Gir39–41], [Gir43–45], [Gir53–55], [Gir 69], [Gir75]), that under certain conditions the
G-estimators for c−1

n ln det R equal

G1(R̂) := c−1
n {ln det R̂ + ln[(n− 1)m(Am

n−1)
−1n(n−mn)−1},

where Am
n−1 = (n− 1)...(n−m), cn is a sequence of constants such that

lim
n→∞

c−2
n ln[n(n−mn)−1] = 0.

For every value n > mn, let the mn-dimensional random vectors ~x
(n)
1 , ..., ~x

(n)
n be inde-

pendent and identically distributed with a mean vector ~a and nondegenerate covariance
matrices Rmn . For a certain δ > 0

sup
n

sup
i=1,...,n

j=1,...,mn

E |x̃(n)
ij |4+δ < ∞,

where ~̃x
(n)

ij are the components of the vector ~̃xi = R
−1/2
mn (x(n)

i − ~a), and

lim
n→∞

(n−mn) = ∞, lim
n→∞

nm−1
n ≥ 1;

and for each value of n > mn, let the random variables x̃
(n)
ij , i = 1, ..., n, j = 1, ...,mn

be independent. Then (see [Gir39–41], [Gir43–45], [Gir53–55], [Gir 69], [Gir75])

p lim
n→∞

[G1(R̂mn)− c−1
n ln det Rmn ] = 0,

lim
n→∞

P{[cnG1(R̂mn)− ln det Rmn ][−2 ln(1−mnn−1)]−1/2 < x}

= (2π)−1/2

∫ x

−∞
e−y2/2 dy.
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2. G2-ESTIMATOR OF THE REAL STIELTJES TRANSFORM OF THE

NORMALIZED SPECTRAL FUNCTION OF COVARIANCE MATRICES

Consider the main problem of the statistical analysis of observations of large dimension:
the estimation of Stieltjes’ transforms of the normalized spectral functions

µmn
(x) = m−1

n

mn∑

k=1

χ(λk < x)

of the covariance matrices Rmn from the observations of the random vector ~ξ with
the covariance matrix Rmn

, where λk are eigenvalues of matrix Rmn
. Note that many

analytic functions of the covariance matrices that are used in multivariate statistical
analysis can be expressed through the spectral function µmn

(x). For example, the
function

m−1
n Trf(Rmn

) =
∫ ∞

0

f(x) dµmn
(x),

where f(x) is an analytical function.
The function

ϕ(t, Rmn
) =

∫ ∞

0

(1 + tx)−1 dµmn
= m−1

n Tr(I + tRmn
)−1, t > 0,

is called Stieltjes’ transform of the function µmn(x). A consistent estimator of Stieltjes’
transform ϕ(t, Rmn) is equal to: G2(t, R̂mn) = ϕ(θ̂n(t), R̂mn), where θ̂n(t) is the positive
solution of the equation

θ(1−mn(n− 1)−1 + mn(n− 1)−1ϕ(θ, R̂mn)) = t, t ≥ 0.

It is obvious that the positive solution of this equation exists and is unique as t ≥
0, mn(n− 1)−1 < 1.

Let the independent observations ~x1, ..., ~xn of the mn-dimensional random vector ~ξ
be given. Assume that the G-condition is fulfilled:

lim sup
n→∞

mnn−1 < 1, 0 < c1 ≤ λi ≤ c2 < ∞, i = 1, ...,mn,

and let the components of the vector (η1k, ..., ηmnk)T = R
−1/2
mn (~ξ−E~ξ) be independent,

and
sup

n
sup

k=1,...,n
sup

i=1,...,mn

E|ηik|4+δ < ∞, δ > 0.

Then ([Gir38–41], [Gir43–45], [Gir54], [Gir58], [Gir69], [Gir76], [Gir84])

lim
n→∞

P {[G2(t, R̂mn)− ϕ(t, Rmn)]
√

(n− 1)mn an(t) + cn(t) < x}

= (2π)−1/2

∫ x

−∞
e−y2/2dy,

as t > 0, where an(t) and cn(t) are some bounded functions.
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2.1. G2-estimator of a complex Stieltjes transform of the normalized spectral
function of covariance matrices

Here, the G2(z)-consistent estimator for the trace of the resolvent of covariance matrices
(Stieltjes’ transform)

m−1
n Tr

(
R̂mn − zImn

)−1

, z = t + is, s > 0

is given as

G2(z) = z−1θ̂ (z)m−1
n Tr

{
R̂mn

− θ̂ (z) Imn

}−1

,

where θ̂ (z) is the measurable complex solution of the equation

θ̂ (z)
1
n

Tr
{

R̂mn
− θ̂ (z) Imn

}−1

−
(
1− mn

n

)
+

θ̂ (z)
z

= 0.

Theorem 2.1. [Gir45] Suppose that ~x1, . . . , ~xn is a random vector sample,

~xk = R1/2
mn

~ξk + ~a, E ~ξk = 0, E ~ξk
~ξT
k = Imn , ~ξT

k = {ξik, i = 1, ...,mn } ,

for any positive defined matrix Am whose eigenvalues are bounded by a certain constant

lim
n→∞

max
k=1,...,n

n−1E
∣∣∣(~xk − ~a)T

A (~xk − ~a)− n−1TrRmnA
∣∣∣ = 0,

λi(Rmn) < c1 < ∞, i = 1, ..., mn,

lim inf
n→∞

mnn−1 > 0, lim sup
n→∞

mnn−1 < ∞.

Then with probability one for every S > 0 and T > 0

lim
n→∞

sup
0<c≤Imz≤S,
|Rez|≤T

∣∣∣G2 (z)−m−1
n Tr {Rmn − zImn}−1

∣∣∣ = 0,

for some c > 0.

2.2. Modified G2-estimator

Thus, under some conditions,

lim
n→∞

sup
0<c≤Imz≤S,
|Rez|≤T

∣∣∣G2 (z)−m−1
n Tr {Rmn − zImn}−1

∣∣∣ = 0,

where c > 0 is a certain constant (which usually is not small). However, we need to
know the trace of the resolvent of the covariance matrix for all s > 0. Since function
m−1

n Tr {Rmn − zImn}−1 is analytical in z, Imz > 0, we can use many methods for its
analytical continuation. For example we can use the Fourier transform and consider
the following modified G2 estimator:

G2 (A, B, u + iv) = i
∫ B

0

{
e|sp|

π

∫ A

−A

ImG2 (z) e−itpdt

}
e−p(v−iu)dp, v > 0,
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where s > c > 0.
It is easy to prove that the following assertion is valid:

Theorem 2.2 [Gir45] If the conditions of Theorem 2.1 are fulfilled, then with proba-
bility one, for every ε > 0,

lim
B→∞

lim
A→∞

lim
n→∞

sup
v, 0<ε≤u

∣∣∣G2 (A,B, u + iv)−m−1
n Tr {Rmn

− (u + iv) Imn
}−1

∣∣∣ = 0.

2.3. G2-estimator for the trace of the resolvent of empirical covariance
matrix when Lindeberg’s condition is not fulfilled

Let ~x1, . . . , ~xn be the sample of independent observations of a random vector,

~xk = R1/2
mn

~ξk + ~a, E ~ξk = 0, E ~ξk
~ξT
k = Imn

, ~ξT
k = {βkξik, i = 1, ..., mn} ,

where βk are independent and do not depend on variables ξik.
For this case, the G-equation for the trace of resolvent has the following form [Gir69]

b(z) = Em−1
n Tr

[
R̂mn − zImn

]−1

= m−1
n

mn∑
p=1

1

λpn−1
n∑

i=1

E β2
i

γβ2
i
q(z)+1

− z
+ εn,

where limn→∞ εn = 0 and q(z) is satisfies the equation

q(z) = m−1
n

mn∑
p=1

λp

λpn−1
n∑

i=1

E β2
i

γβ2
i
q(z)+1

− z
, z = t + is, γ =

mn

n
.

Let us express function q(z) through function b(z). One has

q(z)n−1
n∑

i=1

E
β2

i

γβ2
i q (z) + 1

= m−1
n

mn∑
p=1

λpn
−1

n∑
i=1

E β2
i

γβ2
i
q(z)+1

λpn−1
n∑

i=1

E β2
i

γβ2
i
q(z)+1

− z

= 1 + m−1
n

mn∑
p=1

z

λpn−1
n∑

i=1

E β2
i

γβ2
i
q(z)+1

− z

= 1 + zb (z) .

Hence, in this case, the G2- estimator has the following form

G2(z) = b̂n(θ(z)z)θ(z),

where θ(z) is any measurable solution of the equation

n−1
n∑

i=1

E
β2

i

γβ2
i q (θ(z)z) + 1

= θ(z)
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and q(z) is any measurable solution of the equation

q(z)n−1
n∑

i=1

E
β2

i

γβ2
i q (z) + 1

= 1 + zb̂n (z) ,

with

b̂n (z) = n−1Tr
[
R̂mn

− Iz
]−1

.

3. G3-ESTIMATOR OF INVERSE COVARIANCE MATRIX

The G3-estimator of a matrix R−1
mn

is equal to

G3 = R̂−1
mn

[
1−mnn−1

]
.

Theorem 3.1. ([Gir44], [Gir54]) If G-condition lim supn→∞mnn−1 < 1 is fulfilled,
components ξik, i = 1, . . . , mn of the vectors

~ξk = {ξik, i = 1, . . . , mn}T = R−1/2
mn

[~xk − ~ak] , k = 1, . . . , n

are independent and for some δ > 0

sup
n

max
i=1,...,mn;

k=1,...,n

E |ξik|4+δ
< ∞,

~bT~b < c1, ~aT~a < c2, 0 < c3 < λmin (Rmn) ≤ · · · ≤ λmax (Rmn) ≤ c4,

then

p lim
n→∞

[
~aT G3

~b− ~aT R−1
mn

~b
]

= 0.

Theorem 3.2. ([Gir44], [Gir54]) If G-condition lim supn→∞mnn−1 < 1 holds, compo-
nents ξik, i = 1, . . . , mn of the vectors

~ξk = {ξik, i = 1, . . . , mn}T = R−1/2
mn

[~xk − ~ak] , k = 1, . . . , n

are independent, have the standard Normal distribution and

~bT~b < c1, ,~aT~a < c2, λmin [Rmn ] > c3 > 0,

then

lim
n→∞

P
{[

~aT G3
~b− ~aT R−1

mn
~b
]
cn < x

}
=

1√
2π

∫ x

−∞
exp

{−y2/2
}

dy,

where cn is a certain sequence of constant.
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4. CLASS OF G4 -ESTIMATORS FOR THE TRACES OF THE POWERS

OF COVARIANCE MATRICES

We recall that the G2-estimator is the most important in general statistical analysis.
With its help, we can find G4-estimators of the traces of analytic functions of covariance
matrices. Let us show that with the help of the G2-estimator we can find G4-estimators
of the traces of the powers of covariance matrices. Obviously

m−1
n Tr Rk

mn
= (−1)k (k!)−1 ∂k

∂tk
m−1

n Tr [I + tRmn ]−1
t=0 ; k = 1, 2, ....

Let us recall too that the G2-consistent estimator for the traces of resolvents of

covariance matrices is found in [Gir39]: G2 = m−1
n Tr

(
Imn + θ̂R̂mn

)−1

, where θ̂ is the
positive solution of the main equation of general statistical analysis

θ

[
1−mnn−1 + n−1Tr

(
I + θR̂mn

)−1
]

= t; t > 0.

Using these estimators after certain simple calculations we find G4-estimators:
The G

(1)
4 Estimator of m−1

n TrRmn is equal to m−1Tr R̂mn , which is evident. However,
to obtain the next estimators of the powers of covariance matrices some calculations
are needed.

Theorem 4.1. [Gir44] The G
(2)
4 Estimator of m−1

n TrR2
mn

is equal to

m−1
n Tr R̂2

mn
− (nmn)−1

(
Tr R̂mn

)2

.

4.1. G
1/2
4 -estimator of the square root of covariance matrices

One of the problems of simulation of complex systems is the problem of simulating
on computers a normally distributed random vector ~ξm with zero mean and given
covariance matrix Rmn . Usually one solves such a problem in the following way: first
with the help of pseudorandom variables one simulates the standard Normal vector ~ηm

of dimension m. Then one represents the covariance matrix in the following form:

Rmn = TmnTT
mn

,

where Tmn is the upper (or lower) triangular matrix. After this initial preparation we
can take pseudorandom vector ~ξm = Tmn~ηm or ~ξm =

√
Rmn~ηm. Note that the matrix

Rmn , as a rule, is unknown. Therefore, we must use a G-estimator of such a matrix.
Let us use the integral

√
x =

2
π

∫ ∞

0

x

x + t2
dt,

where x > 0 is a real parameter. Similarly, we have for the square root of the covariance
matrix

R1/2
mn

=
2
π

∫ ∞

0

Rmn

{
It2 + Rmn

}−1
dt =

2
π

∫ ∞

0

{
I − [

I + t−2Rmn

]−1
}−1

dt.
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Hence , using the G2–estimator we can find

G
(1/2)
4 =

2
π

∫ ∞

0

{
I −

[
I + θ̂ (t) R̂mn

]−1
}−1

dt,

where θ̂ (t) is a positive solution of the equation

t2θ (t)
{

1− mn

n
+

1
n

Tr
[
I + θ (t) R̂mn

]−1
}

= 1.

In [Gir55] it is proven that estimator G
(1/2)
4 is consistent and asymptotically Normal.

Theorem 4.3. If the G-condition lim supn→∞mnn−1 < 1 is fulfilled, components
ξik, i = 1, . . . , mn of the vectors

~ξk = {ξik, i = 1, . . . , mn}T = R−1/2
mn

[~xk − ~ak] , k = 1, . . . , n

are independent and for some δ > 0

sup
n

max
i=1,...,mn; k=1,...,n

E |ξik|4+δ
< ∞,

~bT~b < c1, ~aT~a < c2, 0 < c3 < λmin (Rmn
) ≤ · · · ≤ λmax (Rmn

) ≤ c4,

then

p lim
n→∞

∣∣∣~aT G
(1/2)
4

~b− ~aT R−1/2
mn

~b
∣∣∣ = 0.

5. G5-ESTIMATOR OF SMOOTHED NORMALIZED SPECTRAL FUNCTION OF

SYMMETRIC MATRICES

Let µn (x) be a normalized spectral function of a covariance matrix Rm. The G2-
estimator for Stieltjes’ transform of this function is equal to (see Section 2.2)

G2 (A, B, u + iv) = i
∫ B

0

{
e|sp|

π

∫ A

−A

Im G2 (z) e−itpdt

}
e−p(v−iu)dp, v > 0.

Using this estimator we can try to find a consistent estimator of µn (x) . But in this
case two questions arise:
1). Will the estimator G2 be equal to Stieltjes’ transform of a distribution function?
2). The spectral function µn(x) may have a discontinuity. Therefore it is very difficult to
use the inverse formula for Stieltjes’ transform for finding µn(x), using the G2-estimator.
To overcome these difficulties we can use the so-called smoothed normalized spectral
functions

µn (x, ε) =
1
π

∫ x

−∞
Im

1
mn

Tr [Rm − (y + iε)]−1 dy, ε > 0.

It can be shown that
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µn (x, ε) =
1
π

∫ ∞

−∞

µn (x + εy)
1 + y2

dy, ε > 0.

Therefore we call µn (x, ε) a smoothed normalized spectral function. Consider the
estimator

G5 (A,B, x, ε) =
1
π

∫ x

−∞
ImG2 (A,B, y + iε) dy, ε > 0.

It is easy to prove that under the conditions of Theorem 2.1 such estimator G5 of
µn(x, ε) is consistent: with probability one, for any ε > 0 and x

lim
B→∞

lim
A→∞

lim
n→∞

{G5 (A, B, x, ε)− µn (x, ε)} = 0.

6. G6-ESTIMATOR OF STIELTJES’ TRANSFORM OF COVARIANCE

MATRIX PENCIL

In multivariate analysis, we generally wish to test the following three hypotheses:
I. Equality of the correlation matrices of two n-variate normal populations.

II. Equality of the m-dimensional mean vectors for l-variate normal populations.
III. Independence between m-set and q-set of variates in (m + q) -variate normal popu-

lation, with m < q.
Often the normalized spectral functions of the covariance matrices pencil are used

for a verification of these tests.
A large series of papers is devoted to the analysis of normalized spectral functions

of the empirical covariance matrices pencil (see reviews and books on the spectral
theory of random matrices in the References of this book). However, for many years,
nobody could solve the problem of obtaining an equation for Stieltjes’ transform of
spectral functions of large order empirical covariance matrices when observations of the
random vector are independent. In this section, we propose a new G6-estimator initially
presented in [Gir44, Gir54] to solve this problem.

Let the vectors ~x1, . . . , ~xn of dimension mn be a sample of independent observations
of the random vector ~η, E~η = ~a, and E(~η−~a)(~η−~a)T = Rmn . Let R̂mn be the empirical
covariance matrix:

R̂mn = n−1
n∑

k=1

(~xk − ~̂a)(~xk − ~̂a)T, ~̂a = n−1
n∑

k=1

~xk.

The statistic

µmn(x,Rmn) = m−1
n

mn∑
p=1

χ
{
λp(Rmn) < x

}

is called a normalized spectral function of the matrix Rmn . Here, χ is the indicator
function and λp(Rmn) are the eigenvalues of the matrix Rmn .
Consider nonsingular covariance matrices R1 and R2 of the independent m-dimensional
random vectors ~ξ1 and ~ξ2, ~a1 = E ~ξ1, ~a2 = E ~ξ2. The statistic

µn(x,R1, R2) = m−1
m∑

k=1

χ{λk(R1, R2) < x}
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is called the normalized spectral function of the covariance matrix R1 and R2 pencil.
Here λk(R1, R2) are the roots of the characteristic equation

det[R1z −R2] = 0.

To avoid confusion, we will assume that the inverse matrix R−1
1 exists. Sometimes we

will use another definition of the normalized spectral function of the covariance matrices
R1 and R2 pencil

µn(x,R1, R2) = m−1
m∑

k=1

χ
{
λk(R−1

1 R2) < x
}
,

where λk(R−1
1 R2) are eigenvalues of matrix R−1

1 R2.
Consider Stieltjes’ transform with the real parameter

∫ ∞

0

dµn(x,R1, R2)
t + x

= m−1 ∂

∂t
ln det[R1t + R2]

= m−1TrR1[R1t + R2]−1, t > 0.

Let ~x1, . . . , ~xn1 and ~y1, . . . , ~yn2 be independent observations of two independent m-
dimensional random vectors ~a1 + R

1/2
1

~ξ1 and ~a2 + R
1/2
2

~ξ2,

~ξT
1 = {ξ11, . . . , ξ1m}, ~ξT

2 = {ξ21, . . . , ξ2m}.

Let random components ξ11, . . . , ξ1m; ξ21, . . . , ξ2m be independent for every m and
consider empirical covariance matrices and mean vectors

R̂1 = n−1
1

n1∑

k=1

(~xk − ~̂x)(~xk − ~̂x)T, ~̂x = n−1
1

n1∑

k=1

~xk,

R̂2 = n−1
2

n2∑

k=1

(~yk − ~̂y)(~yk − ~̂y)T, ~̂y = n−1
2

n2∑

k=1

~yk.

The expression

µn(x, R̂1, R̂2) = m−1
ν∑

k=1

χ
{
λk(R̂1, R̂2) < x

)

is called the normalized spectral function of the covariance matrix R̂1 and R̂2 pencil.
Here λk(R̂1, R̂2) are the roots of the characteristic equation det[R̂1z − R̂2] = 0 and ν
is a discrete random variable. Obviously, if R̂−1

1 exists with probability 1, then ν = m
with probability 1.

We study Stieltjes’ transform with the real parameter

∫ ∞

0

dµn(x, R̂1, R̂2)
t + x

= m−1 ∂

∂t
ln det[R̂1t + R̂2]

= m−1Tr R̂1[R̂1t + R̂2]−1, t > 0.
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Let us write this expression as

m−1Tr R̂1[R̂1t + R̂2]−1 = −
∫ ∞

0

∂

∂t
m−1Tr[Iα + R̂1t + R̂2]−1 dα.

It can be shown (see [Gir44], [Gir54]]) that under mild conditions on empirical covariance
matrices we can consider instead of this integral, the following expression

− ∂

∂t

∫ A

ε

m−1Tr[Iα + R̂1t + R̂2]−1dα + o(ε) + o(A−1).

Here ε > 0 is a small number and A is a large number. Therefore, we can study the
covariance matrices pencil with the help of normalized traces of the resolvent of the
sum of covariance matrices R̂1 and R̂2:

m−1Tr[Iα + R̂1t + R̂2]−1, α > 0, t > 0.

Let us consider Stieltjes’ transform

b(z, α) =
∫ ∞

0

dµmn(x, R̂1 + αR̂2)
x− z

= m−1
n Tr

[
R̂1 + αR̂2 − zImn

]−1
, z = t + is, s > 0

and the canonical equation for the matrix C(z) = (cpl(z))mn

p,l=1

C(z, α) =
{

n−1
1

n1∑

k=1

E
~ηk~ηT

k

1 + n−1
1 ~ηT

k C(z, α)~ηk

+αn−1
2

n2∑

k=1

E
~νk~ν

T
k

1 + n−1
2 ~νT

k C(z, α)~νk

−zIm

}−1

,

where ~ηk = {ηpk; p = 1, . . . , m}T = ~xk − ~a1, ~νk = {νpk; p = 1, . . . , m}T = ~yk − ~a2 and
Im is the identity matrix, s > 0. In [Gir84] it is shown that under some conditions with
probability 1

lim
n1,n2→∞

[
b(z, α)−m−1TrC(z, α)

]
= 0.

Using the proof of Theorem 3.1 we get that under some conditions

m−1Tr R̂1

[
R̂1t + R̂2

]−1

=
∫ ∞

0

dµn (x,R1, R2)

α + t
1+tmn−1

1 bm(t,α)
+ x

{
1 + (α− 1) mn−1

2 + bm(t,α)

1+tmn−1
1 bm(t,α)

} ,

where

bm (t, α) = m−1Tr R̂1

[
R̂1t + R̂2

]−1

.

We transform this expression as

bm (t, α)
{

1 + (α− 1)mn−1
2 +

bm (t, α)
1 + tmn−1

1 bm (t, α)

}

=
∫ ∞

0

dµn (x,R1, R2){
1 + (α− 1)mn−1

2 + bm(t,α)

1+tmn−1
1 bm(t,α)

}−1 [
α + t

1+tmn−1
1 bm(t,α)

]
+ x

.
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Now replace t by the function θ (t) which is the nonnegative solution of the equation

{
1 + (α− 1)mn−1

2 +
bm (θ (t) , α)

1 + tmn−1
1 bm (θ (t) , α)

}−1 [
α +

θ (t)
1 + tmn−1

1 bm (θ (t) , α)

]
= t.

Then we obtain

G6 = bm (θ (t) , α)
{

1 + (α− 1) mn−1
2 +

bm (θ (t) , α)
1 + tmn−1

1 bm (θ (t) , α)

}
.

From [Gir44, p.218], [Gir54] we get under t > 0

p lim
n1,n2→∞

[
G6 −

∫ ∞

0

dµn (x,R1, R2)
t + x

]
= 0,

or

p lim
n1,n2→∞

[
G6 −m−1TrR1 [R1t + R2]

−1
]

= 0.

7. G7-ESTIMATOR OF THE STATES OF DISCRETE CONTROL SYSTEMS

Now we briefly discuss some questions of GSA related to our topic. Increasing demands
for the quality of operation of industrial robots led to the necessity of creating better
methods of control that take into account dynamic characteristics of manipulators. In
order to construct such control systems, it is necessary to have full knowledge of a
mathematical model of the manipulator. The dynamic model of the manipulator is a
system of nonlinear differential equations. Coefficients of these equations are connected
in a rather complicated fashion via trigonometric functions with generalized coordinates
of the manipulator. Such a system is complicated for practical use because of the es-
sential nonlinearity and mutual influence of links. Therefore, a simplified mathematical
model with adaptive adjustment of the parameters in the control process proves to be
expedient.

7.1. Adaptive approach to the control of manipulator motion

The standard model was given by linear differential equations of the second order in
which the desired characteristics of motion were pointed out. An adaptive regulator in
accordance with the standard model ”adjusts” control of the manipulator according to
the desired motion.

Linearized with respect to the nominal motion, the mathematical model was used
in a procedure of control synthesis on the basis of asymptotic linear regulators as well
as for constructing autoregressive models, representing displacements in separate links.
Parameters of the model are estimated in the process of motion, proceeding from the
optimization of some quality criterion.

The dynamics are described by a Lagrange equation of the second kind, which de-
pends on unknown parameters of the manipulator. Locally optimal finitely convergent
methods of solving inequalities were used for adaptation algorithms. In [Gir54], a
method of adaptive control of the manipulator without full knowledge of the mathe-
matical model is proposed, and its characteristics are studied. The estimation of the
parameters of the model is made by observations on the manipulator in the block of
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adaptation. Using these estimates, a linear regulator optimizing generalized energy is
constructed. The estimate of the parameters and the controls is made recurrently. The
algorithm proposed is locally optimal.

7.2. The discrete analog of the control system

The discrete analog of a mathematical model for the control of manipulator motion can
be represented in the form

~xn+1 = A(~xn)~xn + B(~xn)~un, (7.1)

where ~un is the vector of control moments.
We define the trajectory of motion of the manipulator in the form of a sequence of

points ~ai ∈ R2m, i = 1, 2, ..., through which the manipulator has to pass and approxi-
mate the dynamic model of the manipulator by a linear model

~xn+1 = An~xn + Bn~un + ~εn+1, (7.2)

where An, Bn are unknown matrices, and ~εn+1 are errors of modelling. Assume that
the matrices A(~x(t)), B(~x(t)) in (3) are constant but unknown. Such assumption will
be true for local displacements of the manipulator. Then (7.1) can be written in the
form ~xn+1 = A~xn + B~un. We make n > m observations of the manipulator under some
fixed controls. From the observations, we construct estimators of the matrices Ân, B̂n.

Using these estimators, we can find the extrapolated position of the manipulator

~xe
n+1 = Ân~xn + B̂n~un. (7.3)

We choose the control ~un to minimize the functional

In

(
~̃u
)

= inf
~un

{∥∥~an+1 − ~xe
n+1

∥∥2 + δ ‖~un‖2
}

, δ > 0. (7.4)

The observed position of the manipulator under this control will be

~xn+1 = Ân~xn + B̂n~̃un + ~εn+1.

Without loss of generality, we assume that B is a known square matrix which has an
inverse. The matrix A will be estimated by the least squares method

Ân =
n∑

s=1

(
~xs −B~̃us−1

)
~xT

s−1

[
n∑

s=1

~xs−1~x
T
s−1

]−1

.

Controls from (7.4) will be given in the form (G7–estimator)

~̃us =
[
δI + BBT

]−1
BT

(
~as+1 − Ãs~xs

)
,

where

Ãs = Ãsχ
{∥∥∥Ãs

∥∥∥ < ‖A‖
}

+ Ãs−1χ
{∥∥∥Ãs

∥∥∥ ≥ ‖A‖
}

and χ
{∥∥∥Ãs

∥∥∥ ≥ ‖A‖
}

is the indicator of a random event. Given ~̃un, we observe the

vector ~xn+1 again, find ~̃un+1, , and continue these calculations up to the moment of
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time s when
∥∥∥~as − ~̃xs

∥∥∥
2

< ε, where ε > 0 is a given number. We prove convergence of
estimates of the matrix A.

7.3. The main assertion

Theorem 7.1. [Gir54, p.518] Let the following conditions hold:

E {~εn+1/~ε1, . . . , ~εn} = 0, n = 1, 2, . . . ,

sup
n
‖~an‖ < ∞,

‖A‖
{

1 +
∥∥∥
[
δI + BBT

]−1
BBT

∥∥∥
}

< 1,

sup
n

E ‖~εn‖4 < ∞,

sup
n

∥∥∥∥∥∥

[
n−1

n∑
s=1

E ~εs−1~ε
T
s−1

]−1
∥∥∥∥∥∥

< ∞,

lim sup
h→∞

sup
|ip−jp|≥h,

p=1,...,3

∣∣P{
εip < xip , εjp < xip , p = 1, ..., 3

}

−P
{
εip < xip , p = 1, . . . , 3

}
P

{
εjp < xip , p = 1, . . . , 3

}∣∣ = 0.

Then

lim
n→∞

E
∥∥∥~as − ~̃xs

∥∥∥
2

≤ cδ
∥∥∥
[
δI + BBT

]−1
∥∥∥

2

,

and distribution functions of entries of matrix
[
Ân −A

]
n1/2 are asymptotically normal.

The proposed adaptive method was used for solving some control problem.

7.4. G-system of recursion equations

We will study estimators of parameters of systems with mn unknown parameters and
with the number n of observations satisfying the G-condition:

lim sup
n→∞

mnn−1 < ∞.

Namely

~yk = Θ~yk−1 +~bk−1 + ~εk,

where Θ = {θij}mn

i,j=1 is an unknown matrix, ~yk, k = 1, 2, ... are mn-dimensional obser-

vations, ~y0, ~bk−1, k = 1, 2, ... are known vectors, ~εk, k = 1, 2, ... are mn-dimensional
random vectors. Note, that in the general case, the matrix

∑n
k=1 ~yk−1~y

T
k−1 can be

degenerate. Therefore, we will search for an estimate of a matrix Θ = {θij}mn

i,j=1 in
regularized form:

Θ̂n =
n∑

k=1

c−1
n

(
~yk −~bk−1

)
~yT

k−1

[
Imnα + c−1

n

n∑

k=1

~yk−1~y
T
k−1

]−1

,
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where α > 0, and cn is a certain sequence of numbers. Hence

Θ̂n = Θc−1
n Yn

[
Imn

α + c−1
n Yn

]−1

=
n∑

k=1

c−1
n ~εk~yT

k−1

[
Imn

α + c−1
n Yn

]−1
,

where

Yn =
n∑

k=1

~yk−1~y
T
k−1.

Let us represent this estimator in the following form

n−1TrQ
{

Θ̂n −Θc−1
n Yn

[
Imn

α + c−1
n Yn

]−1
}

= TrQ

n∑

k=1

c−1
n ~εk~yT

k−1

{
n−1

[
Imn

α + c−1
n Yn

]−1 −En−1
[
Imn

α + c−1
n Yn

]−1
}

+ TrQ

n∑

k=1

c−1
n ~εk~yT

k−1

{
En−1

[
Imnα + c−1

n Yn

]−1
}

,

where Q = {qij}mn

i,j=1 is the matrix of real parameters.

7.5. Self-averaging of G-estimators

Let us find conditions of consistency of the G-estimator. We need some auxiliary state-
ments.

Lemma 7.1. [Gir44, p.220] If the random vectors ~εk, k = 1, 2, ... are independent,
‖Θ‖ < 1, E ~εk = 0, k = 1, 2, ..., and

sup
n

max
k=1,...,n

E ‖~εk‖2 c−1
n < ∞,

then

p lim
n→∞

{
n−1Tr

[
Imnα + c−1

n Yn

]−1 −En−1Tr
[
Imnα + c−1

n Yn

]−1
}

= 0.

Lemma 7.2. [Gir44, p.220] If the random vectors ~εk, k = 1, 2, ... are independent,
‖Θ‖ < 1, E ~εk = 0, k = 1, 2, ..., and

sup
n

max
k=1,...,n

E ‖~εk‖2 c−1
n < ∞,

then

p lim
n→∞

{
n−1TrQc−1

n Yn

[
Imnα + c−1

n Yn

]−1 −En−1Tr Qc−1
n Yn

[
Imnα + c−1

n Yn

]−1
}

= 0.

Thus, if the conditions of Lemma 7.2 are satisfied and random variables
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∥∥∥∥∥
n∑

k=1

c−1
n ~εk~yT

k−1

∥∥∥∥∥

are bounded in probability, then

1
n

TrQ

{
Θ̂n −ΘE

1
cn

Yn

[
Imnα +

1
cn

Yn

]−1
}

∼= E
1
n

TrQ

n∑

k=1

1
cn

~εk~yT
k−1

[
Imn

α +
1
cn

Yn

]−1

.

Suppose, the matrix R = E c−1
n Yn

[
Imnα + c−1

n Yn

]−1 is nondegenerate. Then we
consider the G7-estimator

Θ̂n

{
E c−1

n Yn

[
Imn

α + c−1
n Yn

]−1
}−1

of matrix Θ.

Theorem 7.2. [Gir44, p.220] If the random vectors ~εk, k = 1, 2, ... are independent,
‖Θ‖ < 1, E ~εk = 0, k = 1, 2, ..., and

sup
n

max
k=1,...,n

E ‖~εk‖2 c−1
n < ∞,

lim sup
n→∞

∥∥∥∥∥
n∑

k=1

c−1
n ~εk~yT

k−1

∥∥∥∥∥ < ∞,

lim sup
n→∞

∥∥∥∥
{
E c−1

n Yn

[
Imnα + c−1

n Yn

]−1
}−1

∥∥∥∥ < ∞

then

p lim
n→∞

∥∥∥∥Θ̂n

{
E c−1

n Yn

[
Imnα + c−1

n Yn

]−1
}−1

−Θ
∥∥∥∥ = 0.

Suppose, the matrix

R = E c−1
n Yn

[
Imnα + c−1

n Yn

]−1

is nondegenerate. We consider the G7-estimator

Θ̂n

{
E c−1

n Yn

[
Imnα + c−1

n Yn

]−1
}−1

of the matrix Θ.

Theorem 7.3. [Gir44, p.220] If the random vectors ~εk, k = 1, 2, ... are independent,
‖Θ‖ < 1, E ~εk = 0, k = 1, 2, ..., and

sup
n

max
k=1,...,n

E ‖~εk‖2 c−1
n < ∞,
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p lim sup
n→∞

∥∥∥∥∥
n∑

k=1

c−1
n ~εk~yT

k−1

∥∥∥∥∥ < ∞,

lim sup
n→∞

∥∥∥∥
{
E c−1

n Yn

[
Imn

α + c−1
n Yn

]−1
}−1

∥∥∥∥ < ∞,

then

p lim
n→∞

∥∥∥∥Θ̂n

{
E c−1

n Yn

[
Imn

α + c−1
n Yn

]−1
}−1

−Θ
∥∥∥∥ = 0.

8. CLASS OF G8-ESTIMATORS OF THE SOLUTIONS OF SYSTEMS

OF LINEAR ALGEBRAIC EQUATIONS (SLAE)

Let some system S with input vector ~xT = (x1, . . . , xm) and output variables y be
given. As a mathematical model M1 of the system S, it is natural to take the equation
y = A (~x) + ε where A (~x) is some operator, and ε is an error of such representation.
Choosing different input vectors ~x1, . . . , ~xn we have a system of equations

~y = A + ~ε,

where
A = {A (~x1) , . . . , A (~xn)}

is an operator acting in a space of vectors ~x with values in a space of vectors ~yT =
(y1, . . . , yn), and ~εT = {ε1, . . . , εn} is a vector of errors of the model M1. If y = f (~x) ,
where f is an unknown analytic function, then for simplification of the calculations we
can take the operator A to be

A~x =
m∑

i=1

cixi; A~x =
m∑

i=1

ciϕi (xi)

or

A~x =
m∑

i=1

cixi +
m∑

i,j=1

cijxixj + ... +
m∑

i1,...,ik=1

ci1,...,ik
xi1 ...xik

,

where ci, cij , ci1,...,ik
are unknown coefficients; ϕi are known functions. We note that

in all these cases A~x = ~cT~z, where ~c is an unknown vector and ~z is a known vector.
Thus, we arrive at model M1 which is linear with respect to the unknown parameters:

~y = X~c + ~̃ε,

where XT = [~z1, . . . , ~zn] and ~̃ε is a vector of errors. In this section we formulate the
methods of finding coefficients ci if we have the observations of y and the input vectors
~x.

8.1. The classical least squares method

Assume that a mathematical model of a system S has the form
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y = ~xT~c + ε,

where ~x is an m-dimensional vector of input parameters, ~c is an unknown m-dimensional
vector; y is the observable variable of a system S, and ε is a model error. Let n
observations y1, . . . , yn of a system S under the values ~x1, . . . , ~xn of a vector ~x be made.
Then for the unknown vector ~c we get the system of equations

~y = X~c + ~ε, (8.1)

where ~εT = (ε1, . . . , εn) is the observation error. The vectors ~c and ~ε in the system of
equations (8.1) are unknown. This system of equations is undetermined with respect
to the unknown vectors ~c and ε and in the general case has an infinite set of solutions.
Calculating the vector ~c it is desirable to know the value of the vector ~ε. However,
because of the indeterminancy of the system (8.1), it is difficult to find the true value
of the vector ~ε without any auxiliary conditions. We can reduce the system (8.1) to the
form

~y = X~̂c, (8.2)

where the vector ~c is replaced by a new vector ~̂c which is different from ~c in general.
The preliminary investigations of the system (8.1) were made in the following way. In
general the solution ~̂c of a system (8.2) may not exist. However it is not necessary to
find a solution of this system. We need to find the value of ~̂c which minimizes some
quality criterion of an estimator F

{
~y −X~̂c

}
. For the simplification of calculations as

the quality criterion the function

I(~u) = ~uT ~u = ‖~u‖2

is usually chosen. If the inverse matrix
(
XT X

)−1 exists, then we can obtain the mini-

mizer of
∥∥∥~y −X~̂c

∥∥∥ as

~̂c = (XT X)−1XT ~y. (8.3)

This formula explains the name, the “Least Squares Method”. The estimation is

~̂c− ~c = (XT X)−1XT ~ε. (8.4)

If the inverse matrix
(
XT X

)−1 does not exist, then the function ϕ(~c) := ‖~y −X~c‖2
can have uncountable points of minimum. Again, to simplify calculations among all
points of the minimum, the vector ~̃c with the smallest Euclidean norm is chosen. We
can find this vector in the following way: consider the function

ϕ (~c, α) := ‖~y −X~c‖2 + α ‖~c‖2 , α > 0

instead of the function ϕ(~c) := ‖~y −X~c‖2 . Because α > 0, the minimum of function
ϕ(~c, α) is unique and the vector ~cα, under which the function ϕ(~c, α) will take the
minimal value, is defined by the formula

~cα =
(
αI + XT X

)−1
XT ~y. (8.5)

It is easy to prove that limα↓0 ~cα = ~̃c.
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As the G-estimators of the regularized pseudo-solutions

~xα =
[
Iα + XT X

]−1
XT~b,

we choose a regularized solution

~yθ = Re
[
I (θ + iε) + ΞT Ξ

]−1
ΞT~b,

where ε 6= 0 and θ are real parameters, Ξ =
(
ξ
(n)
ij

)
is the observation of the random

matrix X + H, where H is a certain random matrix. The G-estimators of the values
~xα belong to the class of G̃8 -estimators and are denoted by G8. In this section, the
following G8-estimator of G̃8-class is proposed

~G8 = Re
[
I

(
θ̂1 + iε

)
+ ΞT Ξ

]−1

ΞT~b. (8.6)

Here θ̂1 is the maximal real solution of the equation

fn(θ) = α, (8.7)

where α ≥ 0,

fn(θ) = θRe [1 + δ1a (θ)]2 − εIm [1 + δ1a (θ)]2 + (δ1 − δ2) [1 + δ1Rea(θ)] ,

a (θ) =
1
n

Tr
[
I (θ + iε) + ΞT Ξ

]−1
, δ1 = σ2

nn , δ2 = σ2
nm,

σ2
n is the variance of entries ξ

(n)
ij of the matrix Ξ =

(
ξ
(n)
ij

)
. We call equation (8.7) the

main equation for the G8-estimator.
It is proved [Gir44, Gir54, Gir69, Gir84] that under certain conditions, for every

γ > 0
lim
ε→0

lim
n→∞

P
{|~d[~G8 − (Iα + XT X)−1XT~b]| > γ

}
= 0,

where ~d is an arbitrary vector such that ~dT ~d ≤ c < ∞.

8.2. Modified G8-estimator of the solution of SLAE

In this section, the following modified G8-estimator from the G̃8-class for

~xα = [Iα + AT A]−1AT~b

is proposed,

~G8(α, ε, B, C) = Im
∫ B

0

{
e|sp|

π

∫ C

−C

Im ([Iθ̂ + XT X]−1XT~b)e−itpdt

}
e−p(α−iε)dp.

Here θ̂1 is the measurable complex solution of the equation

θ̂

{
1 +

σ2

n
Tr

[
Iθ̂ + XT X

]−1
}2

+
(
1− mn

n

) {
1 +

σ2

n
Tr

[
Iθ̂ + XT X

]−1
}

= −z,
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σ2
n is the variance of entries x

(n)
ij of observation X =

(
x

(n)
ij

)
of matrix A + Ξ, z =

t + is, s ≥ c, c is a certain constant.
Under certain conditions we have ([Gir44], [Gir54], [Gir69], [Gir84])

lim
B→∞

lim
C→∞

p lim
n→∞

~dT
[
~G8(α, ε,B,C)− Re

[
I(α + iε) + AT A

]−1
AT~b

]
= 0.

8.3. G8-estimator of the solutions of SLAE with block structure

For linear forms ~dT ~xα of regularized pseudo-solutions ~xα = [Iα + AT A]−1AT~b of the
systems of linear algebraic equations A~x = ~b with block structure, the following G8-
estimator

~dT ~G8 = −Re~dT
[
C1 + iεIm + ZT

s (C2 − iεIn)−1
Zs

]−1

ZT
s (C2 − iεIn)−1~b,

is suggested. Here A is a matrix of the size np×mq, n ≥ m, ~x and ~b are vectors, α > 0
is a parameter of regularization, ε > 0; ~b ∈ Rnp; ~dT ∈ Rmq; Zs = s−1

∑s
i=1 Xi; Xi

are independent observations of the matrix A+Ξ, Ξ =
(
Ξ(n)

ij

)j=1,...,m

i=1,...,n
is a random ma-

trix with independent blocks Ξ(n)
ij , EΞ(n)

ij = 0, E
∥∥∥Ξ(n)

ij

∥∥∥
2

< ∞; and C1 = (C1iδij)
m
i,j=1 ,

C2 = (C2iδij)
n
i,j=1 are block diagonal real matrices that are arbitrary measurable solu-

tions of the system of nonlinear equations

C1l + Re
n∑

j=1

[
1
s
EΞ(n)T

jl {Qjj}Ξjl

]

Q=[C2−iεIn+X̃(C1+iεIm)−1X̃T ]−1
= αI;

C2k + Re
m∑

j=1

1
s

[
EΞ(n)

kj {Θjj}ΞT
kj

]
Θ=[C1+iεIm+X̃T (C2−iεIn)−1X̃]−1 = I,

k = 1, . . . , n; p = 1, . . . ,m, X̃ = Zs.

It is proved [Gir84, p.236] that under certain conditions, for every γ > 0,

lim
ε→0

lim
n→∞

P
{∣∣∣~dT

(
~G8 − ~xα

)∣∣∣ > γ
}

= 0.

8.4. G8-estimator of the solutions of SLAE with symmetric block
structure

Let A~x = ~b be a SLAE, where Apq×pq =
(
A

(n)
ks

)p

k,s=1
, A

(n)
ks = A

(n)T
ks and A

(n)
ks ; k ≥

s, k, s = 1, ..., p are blocks of the dimension q, and let ~x, ~b be vectors. We consider the
linear form of the regularized solution of such a system

~dT ~xε = ~dT Re [Apq×pq + iεIn]−1 ~b; ~d ∈ Rn; n = pq; ε > 0.

For linear forms ~dT ~xε of regularized pseudo-solutions,

~xε = Re [Apq×pq + iεIn]−1 ~b,
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of the systems of linear algebraic equations A~x = ~b with block structure, the following
G8–estimator

~dT ~G8 = −Re [Xpq×pq + C (ε) + iεIn]−1 ~b

is considered. Here, Xpq×pq is an observation of matrix Ξpq×pq + Apq×pq, Ξpq×pq =(
Ξ(n)

ks

)p

k,s=1
, Ξ(n)

ks = Ξ(n)T
ks and Ξ(n)

ks ; k ≥ s, k.s = 1, ..., p are independent random

blocks of the dimension q, Cpq×pq (ε) =
(
δijC

(n)
jj (ε)

)p

i,j=1
and the matrix-blocks Css (ε)

satisfy for z = iε the canonical equation

Cjj (ε) = ReE
p∑

s=1

Ξ(n)
js Qss Ξ(n)T

js

∣∣∣
Q=[Xpq×pq+Cpq×pq(ε)+iεIn]−1

.

It is proven in [Gir84, p.250] that under certain conditions, for every γ > 0

lim
ε↓0

lim
n→∞

P
{∣∣∣~dT

(
~G8 − ~xε

)∣∣∣ > γ
}

= 0.

9. G9-ESTIMATOR OF THE SOLUTION OF THE DISCRETE

KOLMOGOROV-WIENER FILTER

The discrete analog of the Kolmogorov-Wiener filter has the form

Rm~ϕ = ~b, (9.1)

where

Rm =
{
m−1R

(
sm−1, km−1

)}m

k,s=1
; ~bT (t) =

{
Q

(
t, sm−1

)
, s = 1, . . . , m

}
,

~ϕT (t) =
{
ϕ

(
t, km−1

)
, k = 1, ..., m

}
,

R (x, y) = E [α (x)−Eα (x)] [α (y)−Eα (y)] ,

Q (x, y) = E [α (x)−Eα (x)] [β (y)−Eβ (y)] ,

and α (x) , β (y) are random processes. If Rm > 0, then the estimator ~̂ϕ =
(
R̂m

)−1
~̂b

converges in probability to ~ϕ when n1, n2 →∞, where

R̂ =
{

m−1R̂
(
sm−1, km−1

)}m

k,s=1
, ~ϕT (t) =

{
ϕ

(
t, km−1

)
, k = 1, ...,m

}
;

~̂b
T

(t) =
{

Q̂
(
t, sm−1

)
, s = 1, . . . , m

}
,

R̂ (x, y) = (n1 − 1)−1
n1∑

k=1

[αk (x)− α̂ (x)] [αk (y)− α̂ (y)],
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Q̂ (x, y) = (n2 − 1)−1
n2∑

k=1

[αk (x)− α̂ (x)]
[
βk (y)− β̂ (y)

]
,

and αk (x) , βk (y) are independent observations of α (x) , β (y) .
As mentioned in previous sections of this chapter, the large order of system (9.1)

requires a large number of observations of stochastic processes α (x) , β (y) .
Therefore, it is of interest to obtain more accurate estimators. Applying the G-

analysis technique, which is described in [Gir44, Gir54, Gir69, Gir84], we can ob-
tain an estimator of ~ϕ, such that it would approach in probability ~ϕ, provided that
limn→∞mn−1 = c < 1. We assume for simplification of formulas that vector ~b is
known. This estimator will be referred to as the G9-estimator. It is

~G9 =
(
R̂m

)−1
~b

(
1− mn

n

)
. (9.2)

Denote

~αT
k =

(
αk

(
s

m

)
, s = 1, . . . , m

)
, R−1/2(~αk −E ~αk) = ~ξk = (ξsk s = 1, . . . , m)T .

Theorem 9.1. ([Gir44], [Gir54], [Gir69], [Gir84]) If random variables ξsk are indepen-
dent for every n, E |ξki|4+δ ≤ c, δ > 0, lim

n1→∞
mn−1

1 < 1; λi (Rm) ≤ c < ∞, the vector

~b is known,

sup
m

[
~bT~b + ~cT~c

]
< ∞,

where ~c ∈ Rm, and λi (Rm) are the eigenvalues of the matrix Rm, then

p lim
n1→∞

[
~cT ~G9 − ~cT ~ϕ

]
= 0.

10. G10-ESTIMATOR OF THE SOLUTION OF A REGULARIZED

DISCRETE KOLMOGOROV-WIENER FILTER WITH KNOWN FREE VECTOR

The discrete analog of a regularized Kolmogorov-Wiener filter has the form

(εIm + Rm) ~ϕ(t) = ~b(t),

where ε > 0 is a parameter of regularization,

Rm =
{
m−1R

(
sm−1, km−1

)}m

k,s=1
; ~bT (t) =

{
Q

(
t, sm−1

)
, s = 1, . . . , m

}
,

~ϕT (t) =
{
ϕ

(
t, km−1

)
, k = 1, ..., m

}
,

R (x, y) = E [α (x)−Eα (x)] [α (y)−Eα (y)] ,

Q (x, y) = E [α (x)−Eα (x)] [β (y)−Eβ (y)] .
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Here α (x) , β (y) are random processes. The estimator ˆ~ϕ(t) =
(
εI + R̂m

)−1 ˆ~b(t) con-
verges in probability to ~ϕ(t) when n1, n2 →∞. Here

R̂ =
{

m−1R̂
(
sm−1, km−1

)}m

k,s=1
, ~ϕT (t) =

{
ϕ

(
t, km−1

)
, k = 1, ...,m

}
;

~̂b
T

(t) =
{

Q̂
(
t, sm−1

)
, s = 1, . . . , m

}
,

R̂ (x, y) = (n1 − 1)−1
n1∑

k=1

[αk (x)− α̂ (x)] [αk (y)− α̂ (y)],

Q̂ (x, y) = (n2 − 1)−1
n2∑

k=1

[αk (x)− α̂ (x)]
[
βk (y)− β̂ (y)

]
,

and αk (x) , βk (y) are independent observations of α (x) , β (y) . Applying the G-
analysis technique, which is described in [Gir44, Gir54, Gir69, Gir84], we can obtain an
estimator of ~ϕ(t), which approaches in probability ~ϕ(t), provided that

lim
n1→∞

mn−1
1 < 1; lim

n1→∞
mn−1

2 < ∞

This estimator will be referred to as the G10-estimator:

~G10 = ε−1
(
I + θ̂R̂m

)−1
~b(t), (10.1)

where θ̂ is a nonnegative solution of the equation

θ

[
1− γn1 + γn1m

−1Tr
(
θI + R̂m

)−1
]

= ε−1, ε > 0; γn1 = mn−1
1 < 1. (10.2)

Theorem 10.1. [Gir44, Gir54, Gir69, Gir84] Assume that

~xk :=
{
αk

(
sm−1

)
; s = 1, ..., m

}T
= R1/2

m ~ηk + ~a,

{
~ηT

k = {ηik; i = 1, ...,m}} ; k = 1, ..., n

R
1/2
m is a symmetric matrix, t is fixed, n1 = n2 = n, random variables ηik; i =

1, ..., m; k = 1, ..., n are independent for every n, and

E ηik = 0; E η2
ik = 1; i = 1, . . . ,m; k = 1, . . . , n

lim
n→∞

mn−1 < 1, λi (R) ≤ c < ∞, the vector ~b is known,

sup
m

[
~bT~b + ~cT~c

]
< ∞, ε > 0,

where ~c ∈ Rm, λi (R) are the eigenvalues of the matrix Rm. Then
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p lim
n→∞

[
~cT G10 − ~cT ~ϕ

]
= 0.

10.1. G10-estimator for the solution of a Kolmogorov-Wiener filter with
unknown vector

Consider the discrete analog of a regularized Kolmogorov-Wiener filter

~b(t) = (εI + Rm) ~ϕ(t), (10.3)

where ε > 0 is a parameter of regularization,

Rm =
{
m−1R

(
sm−1, km−1

)}m

k,s=1
; ~bT (t) =

{
Q

(
t, sm−1

)
, s = 1, ..., m

}
,

~ϕT (t) =
{
ϕ

(
t, km−1

)
, k = 1, ..., m

}
,

R (x, y) = E [α (x)−Eα (x)] [α (y)−Eα (y)] ,

Q (x, y) = E [α (x)−Eα (x)] [β (y)−Eβ (y)] .

For this case, when free vector ~b(t) is unknown, the estimator vector

~ϕT (t) = {ϕ (
t, km−1

)
, k = 1, . . . , m} will be referred to as the ~̃G10 -estimator. It has

the form

~̃G10 = ε−1

{
1 + εθ̂

[
γn − n−1Tr

{
I + θ̂R̂m

}−1
]}(

I + θ̂R̂m

)−1
~̂b, (10.4)

where θ̂ is a nonnegative solution of the equation

θ

[
1− γn + γnm−1Tr

(
θI + R̂m

)−1
]

= ε−1, ε > 0; γn = mn−1 < 1, (10.5)

R̂m = n−1
n∑

k=1

R1/2
m ~ηk~ηkR1/2

m −
(
~̂x− ~a

)(
~̂x− ~a

)T

; ~̂x = n−1
n∑

k=1

~xk,

~̂b = n−1
n∑

k=1

(yk − ŷ)
(
~xk − ~̂x

)
; ŷ = n−1

n∑

k=1

yk,

~xk :=
{
αk

(
sm−1

)
; s = 1, ...,m

}T
= R1/2

m ~ηk + ~a; yk := βk (t) = ξk + p,

R
1/2
m is a symmetric matrix, t is fixed, n1 = n2 = n, the vectors

{
~ηT

k = {ηik; i = 1, ..., m} ; ξk

}
; k = 1, ..., n

are independent for every n, random variables ηik; i = 1, ...,m are independent; ξk; k =
1, ..., n are also independent, and
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E ηik = 0; E η2
ik = 1; E ξk = 0; E ξk

(√
Rm~ηk

)
ik

= bi; i = 1, ..., m; k = 1, ..., n.

Theorem 10.3. [Gir84, p.298] If

lim sup
n→∞

mn−1 < 1,

λi (Rm) ≤ c < ∞; i = 1, ...,m

sup
m

[
~bT~b + ~cT~c

]
< ∞, ε > 0

sup
n

max
i=1,...,m; k=1,...,n

E |ηik|4 < ∞,

sup
n

max
k=1,...,n

max
s=1,...,m

λs

{
E

[
ξk

√
Rm~ηk −~b

] [
ξk

√
Rm~ηk −~b

]T
}

< ∞,

then for every ε > 0

p lim
n→∞

[
~cT ~̃G10 − ~cT ~ϕ

]
= p lim

n→∞

[
~cT ~̃G10 − ~cT (Iε + Rm)−1~b

]
= 0.

11. G11-ESTIMATOR OF THE MAHALANOBIS DISTANCE

Let ~xi, ~yj ; i = 1, ..., n1; j = 1, ..., n2 be independent observations of m-dimensional
random vectors ~ξ = ~a1 +

√
R~µ, ~µT = {µi, i = 1, . . . ,m} and ~η = ~a2 +

√
R~ν, ~νT =

{νi, i = 1, . . . , m} respectively and suppose that random variables µi, νi, i = 1, . . . ,m
are independent for every n. As the empirical mean value vectors and the covariance
matrix R, we take:

~̂a1 = n−1
1

n1∑

i=1

~xi, ~̂a2 = n−1
2

n2∑

i=1

~yi,

R̂ =
1

n1 + n2 − 2

{
n1∑

i=1

(
~xi − ~̂a1

)(
~xi − ~̂a1

)T

+
n2∑

i=1

(
~yi − ~̂a2

)(
~yi − ~̂a2

)T
}

.

We shall refer to the expression

G11 =
{(

~̂a1 − ~̂a2

)T

R̂−1
(
~̂a1 − ~̂a2

)}
n1 + n2 − 2−m

n1 + n2 − 2
− m

n1
− m

n2

as the G11-estimator of the Mahalanobis Distance.

Theorem 11.1. [Gir54, p.598] Let n1 + n2 − 2 > m,

Eµi = E νi = 0, Eµ2
i = E ν2

i = 1, i = 1, . . . ,m,
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and for a certain β > 0

sup
n

max
i=1,...,m

E
[
|µi|4+β + |νi|4+β

]
< ∞

inf
n

min
i=1,...,m

λi (R) > 0, sup
n

max
i=1,...,m

λi (R) < ∞,

lim
n1,n2→∞

mn−1
1 = c1, lim

n1,n2→∞
mn−1

2 = c2, c1, c2 < ∞; c1 + c2 6= c1c2,

lim
n1,n2→∞

(~a1 − ~a2)
T

R−1 (~a1 − ~a2)
[
n−1

1 + n−1
2

]
= 0.

Then

p lim
n1,n2→∞

{
G11 − (~a1 − ~a2)

T
R−1 (~a1 − ~a2)

}
= 0.

12. G12-REGULARIZED MAHALANOBIS DISTANCE ESTIMATOR

We call

G12 =
(
~̂a1 − ~̂a2

)T [
εI + εθ−1

n1,n2
R̂

]−1 (
~̂a1 − ~̂a2

)

− [
n−1

1 + n−1
2

]
εθ−1

n1,n2
TrR̂

[
εI + εθ−1

n1,n2
R̂

]−1

,

(12.1)

the G12-regularized Mahalanobis distance estimator, where ε > 0 is a parameter. Here,
θn1,n2 is the nonnegative solution of the equation

1− kn1,n2 + kn1,n2θ
−1
n1,n2

TrR̂
[
θn1,n2I + R̂

]−1

= εθn1,n2 ,

kn1,n2 = m [n1 + n2 − 2]−1
.

It can be seen that there exists a unique nonnegative solution of this equation.

Theorem 12.1. [Gir54, p.601] Let the random variables µi, νi, i = 1, . . . , m be inde-
pendent for every n,

Eµi = E νi = 0, Eµ2
i = E ν2

i = 1, i = 1, . . . ,m,

for a certain β > 0

sup
n

max
i=1,...,m

E
[
|µi|4+β + |νi|4+β

]
< ∞

inf
n

min
i=1,...,m

λi (R) > 0, sup
n

max
i=1,...,m

λi (R) < ∞,

and the G-condition be satisfied:

lim sup
n1,n2→∞

m [n1 + n2 − 2]−1
< ∞, lim sup

n1,n2→∞

[
n2n

−1
1 + n1n

−1
2

]
< ∞,

sup
n1,n2

(~a1 − ~a2)
T (~a1 − ~a2) < ∞,
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then, as ε > 0

lim
n1,n2→∞

P
{[

G12 − (~a1 − ~a2)
T (εI + R)−1 (~a1 − ~a2)

]
D−1/2

m

√
n1 + n2 − 2 < x

}

=
1√
2π

∫ x

−∞
exp

{−y2/2
}

dy,

where Dm are certain constants.

13. DISCRIMINATION OF TWO POPULATIONS WITH COMMON UNKNOWN

COVARIANCE MATRIX. G13-ANDERSON-FISHER STATISTICS ESTIMATOR

Let ~xi, ~yj ; i = 1, ..., n1; j = 1, ..., n2 be independent observations of m-dimensional
random vectors ~ξ = ~a1 +

√
R~µ, ~µT = {µi, i = 1, . . . ,m} and ~η = ~a2 +

√
R~ν, ~νT =

{νi, i = 1, . . . , m} respectively and suppose that random variables µi, νi, i = 1, . . . ,m
are independent for every n.

For the observation classification in the case of two Normal populations, the so-called
discriminant function is used:

U (~x) =
{

~x− 1
2

(~α1 + ~α2)
}T

R−1 (~α1 − ~α2) , ~xT = (x1, · · · , xm) .

We use empirical mean value vectors and the covariance matrix R,

~̂a1 = n−1
1

n1∑

i=1

~xi, ~̂a2 = n−1
2

n2∑

i=1

~yi,

R̂ =
1

n1 + n2 − 2

{
n1∑

i=1

(
~xi − ~̂a1

)(
~xi − ~̂a1

)T

+
n2∑

i=1

(
~yi − ~̂a2

)(
~yi − ~̂a2

)T
}

.

We shall refer to the expression

G13 (~x) =
{

~x− 1
2

(
~̂a1 + ~̂a2

)T

R̂−1
(
~̂a1 − ~̂a2

)}
n1 + n2 − 2−m

n1 + n2 − 2

as the G13 (~x) -estimator of the discriminant function.

Theorem 13.1. [Gir54, p.611] If in addition to the conditions of Theorem 11.1

lim
n1,n2→∞

(~a1 + ~a2)
T

R−1 (~a1 + ~a2)
[
n−1

1 + n−1
2

]
= 0,

then

p lim
n→∞

{G13 (νi)− U (νi)} = 0,

where ~νi is an observation of vector ~ξ or ~η which does not depend on ~xi, ~yj ; i = 1, ..., n1;
j = 1, ..., n2 and distributed as N {~a1, R} or N {~a2, R} .
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14. G14 -ESTIMATOR OF REGULARIZED DISCRIMINANT FUNCTION

If matrix R is singular or ill-conditioned, then instead of the Mahalanobis distance α,
its regularized analog is considered

αε = (~a1 − ~a2)
T [εI + R]−1 (~a1 − ~a2) , ε > 0.

The regularized distance has more useful properties than the distance α. To prove
asymptotic normality of G-estimators, it is not necessary that the random vectors ~ξ and
~η be normally distributed. As was mentioned in the previous chapters, the estimator

Gε =
(
~̂a1 − ~̂a2

)T [
εI + R̂

]−1 (
~̂a1 − ~̂a2

)
, ε > 0,

with empirical mean vectors and the covariance matrix ~̂a1, ~̂a2, R̂, is inappropriate for
solving multivariate classification problems. Indeed, with the increase of m, the number
of components of the vectors ~ξ and ~η, the number of observations needed for obtaining a
given accuracy in the Mahalanobis distance estimation grows rapidly. In this section we
assert that under some conditions, there exists an asymptotically Normal G-estimator
for the regularized discriminant function, provided that

lim sup
n1,n2→∞

[
mn−1

1 + mn−1
2

]
< ∞.

Let ~xi, ~yj ; i = 1, . . . , n1; j = 1, . . . , n2 be independent observations of m-dimensional
independent random vectors ~ξ and ~η respectively. We call the expression

G14 (~x) =
{

~x− 1
2

(
~̂a1 − ~̂a2

)}T [
εI + εθ−1

n1,n2
R̂

]−1 (
~̂a1 − ~̂a2

)

− [
n−1

1 + n−1
2

]
εθ−1

n1,n2
Tr R̂

[
εI + εθ−1

n1,n2
R̂

]−1

the G14–estimator for the regularized discriminant function. Here θn1,n2 is the nonneg-
ative solution of the equation [Gir54, p.615]

1− kn1,n2 + kn1,n2θ
−1
n1,n2

TrR̂
[
θn1,n2I + R̂

]−1

= εθn1,n2 ,

kn1,n2 = m [n1 + n2 − 2]−1

It can be seen that there exists a unique nonnegative solution of this equation.

Theorem 14.1. [Gir54, p.615] Let the conditions of Theorem 13.1 be satisfied. Then

lim
n1,n2→∞

max
i=1,2

P

{[
G14

(
~ξi

)
−

{
~ξi − 1

2
(~a1 − ~a2)

}T

(εI + R)−1 (~a1 − ~a2)

]

×
√

n1 + n2 − 2
Vm

< x

}
=

1√
2π

∫ x

−∞
exp

{−y2/2
}

dy,

where ~ξi is an observation which does not depend on ~xi, ~yj ; i = 1, ..., n1; j = 1, ..., n2,
distributed as N {~a1, R} or N {~a2, R} and Vm are certain constants.
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15. G15 -ESTIMATOR OF THE NONLINEAR DISCRIMINANT FUNCTION,

OBTAINED BY OBSERVATION OF RANDOM VECTORS WITH

DIFFERENT COVARIANCE MATRICES

In the case of classifying into two populations based on the Normal distribution, the
nonlinear discriminant function is equal to

V (~x) =
1
2

{
− (~x− ~a1)

T
R−1

1 (~x− ~a1) + (~x− ~a2)
T

R−1
2 (~x− ~a2)− ln det R1R

−1
2

}
.

Let ~xi, ~yj ; i = 1, . . . , n1; j = 1, . . . , n2 be independent observations of m-dimensional
random vectors ~ξ and ~η respectively; these vectors ~ξ and ~η are independent and dis-
tributed as N {~a1, R} , N {~a2, R} . As the empirical mean vectors and the covariance
matrices Ri, we take:

~̂a1 = n−1
1

n1∑

i=1

~xi, ~̂a2 = n−1
2

n2∑

i=1

~yi,

R̂1 =
1

n1 − 1

n1∑

i=1

(
~xi − ~̂a1

)(
~xi − ~̂a1

)T

, R̂2 =
1

n2 − 1

n2∑

i=1

(
~yi − ~̂a2

)(
~yi − ~̂a2

)T

.

We shall refer to the expression

1
2

[
−

(
~x− ~̂a1

)T

R̂−1
1

(
~x− ~̂a1

) n1 − 1−m

n1 − 1
+

m

n1

+
(
~x− ~̂a2

)T

R̂−1
2

(
~x− ~̂a2

) n2 − 1−m

n2 − 1
+

m

n2

]
− 1

2
ln

det R̂1R̂
−1
2(

1−mn−1
1

) (
1−mn−1

2

)

as the G15 (~x) -estimator of the nonlinear discriminant function.

Theorem 15.1. [Gir54, p.615] Let random variables µi, νi, i = 1, . . . ,m be indepen-
dent for every n, Eµi = E νi = 0, Eµ2

i = E ν2
i = 1, i = 1, . . . , m, for a certain

β > 0

sup
n

max
i=1,...,m

E
[
|µi|4+β + |νi|4+β

]
< ∞,

inf
n

min
i=1,...,m

λi (R) > 0, sup
n

max
i=1,...,m

λi (R) < ∞,

and the G-condition be satisfied:

lim
m→∞

mn−1
1 < 1, lim

m→∞
mn−1

2 < 1,

sup
m

(~a1 − ~a2)
T (~a1 − ~a2) < ∞.

Then,
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p lim
n→∞

{G15 (ν)− V (ν)} = 0,

where ν is an observation of vector ~ξ or ~η, which does not depend on ~xi, ~yi.

16. CLASS OF G16 - ESTIMATORS IN THE THEORY OF EXPERIMENTAL

DESIGN, WHEN THE DESIGN MATRIX IS UNKNOWN

In this section we deal with problems of experimental design under the G-condition

lim sup
n→∞

mnn−1 < ∞.

Such a condition occurs when the number m of unknown parameters is large, and the
number of experiments n has the same order. Given the G-condition, the evaluation of
every separate parameter ai yields under some standard conditions the value c1n

−1/2,
where c1 is some constant. In some cases, the total evaluation error is c1mn−1/2.

In view of the above, it seems that it is impossible to obtain consistent estimators
under the G-condition. However, for many problems it is necessary to evaluate not the
parameters ai, but some function of these parameters f (a1, . . . , am) . But it turns out
that in many cases it is possible to find the limit of this function as n →∞;

lim sup
n→∞

|f (â1, . . . , âm)− g (a1, . . . , am)| = 0.

The function g is known and can be obtained as the solution of some equation.
This function g differs from the true function f , but when these two functions are
known, we can find the G-estimator G(â1, . . . , âm) of function f(a1, . . . , am) such that
in probability or with probability one, the following limit is valid

lim sup
n→∞

|G (â1, . . . , âm)− f (a1, . . . , am)| = 0.

A brief outline of applications of the G-analysis methods described in this section fol-
lows.

16.1. G16 -estimator of regression models errors. The resolvent method in
the theory of experiment design, when the design matrix is random

Let us consider the regression model

~y = X~c + ~ε, E ~ε = ~0, E ~ε~εT = Rmn , EX = A

where X is a random matrix, A is a known matrix and the distribution of the matrix
X is unknown. Only a simple characteristic of this distribution is known, namely:
the entries of the matrix X are independent and their variances are equal to certain
constants. Consider a regularized estimator of parameters of this linear regression model

~cα =
(
αI + XT X

)−1
XT ~y. (16.1)

Suppose that we have performed experimental design under the random matrix X,
which does not depend on the random vector ~ε. Then

~c− ~cα = ~c− {
αI + XT X

}−1
XT ~y.
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Let α = 0, E ~εi = 0, Cov εiεi = n−1δij and p lim inf
n→∞

λmin

{
XT X

}
> 0. We have

E {‖~c− ~cα‖α=0 |X} = n−1Tr
{
XT X

}−1
.

Such an expression is inconvenient for finding a minimum on some set of matrices
X, since X is a random matrix. It can happen that this matrix will be ill-posed with
a positive probability. Therefore it is very important that under general conditions
this expression converges to some nonrandom expression, which is more convenient
for finding the optimum design. We introduce here the G16 estimator of this error
E {‖~c− ~cα‖α=0 |X}:

G16 = bn (0) ,

where real analytic function bn (α) , α > 0 satisfies the following equation

bn (α) =
1
n

Tr
{

I [1 + γbn (α)] + (1− γ) +
1

1 + γbn (α)
AAT

}−1

, γ =
mn

n
< 1.

We mean here the G16–estimator of the expression for E {‖~c− ~c0‖ |X}.
Theorem 16.1. If for every n the random entries xij of the matrix X are independent,

Exij = aij , Varxij = n−1, lim sup
n→∞

m−1
n n < 1, E |(xij−aij)

√
n|4+δ ≤ c < ∞, δ > 0,

0 < c1 ≤ λk(AAT ) ≤ c2 < ∞,

then
p lim
n→∞

[
E {‖~c− ~cα‖α=0 |X} −G16

]
= 0.

16.2. G16 -estimator of regression models errors. The resolvent method in
the theory of experiment design, when the design matrix is an observation
of a certain random matrix

Let us consider the regression model

~y = A~c + ~ε, E ~ε = ~0, E ~ε~εT = Rmn ,

where A is a matrix.
Here, under the same conditions as in the previous section, we consider the following

quality criterion of the least squares estimator

E {‖~c− ~cα‖α=0} = n−1Tr
{
AT A

}−1
.

Suppose that we do not know the matrix A, but we have one observation of the
matrix X, where X is a random matrix not depending on random vector ~ε such that
EX = A. Then the G16 estimator of this error, n−1Tr(AT A)−1, is equal to:

G16(B,C, u + iv) = i
∫ B

0

{
e|sp|

π

∫ C

−C

Im G27(z)e−itpdt

}
e−p(v−iu0dp, v > 0.
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Here the G27-estimator of Stieltjes’ transform (see Section 27)

ϕ
(
z, AAT

)
= m−1Tr

[
AAT − zImn

]−1

is by definition the following expression:

G27

(
α, XXT

)
= ϕ

(
θ̂ (z) , XXT

) [
1 + γϕ

(
θ̂ (z) , XXT

)]−1

,

where θ̂ (z) is the measurable solution of the G27 equation

− θ̂ (z)
{

1 +
1
n

Tr
[
XXT − θ̂ (z) Imn

]−1
}2

+
(
1− mn

n

) {
1 +

1
n

Tr
[
XXT − θ̂ (z) Imn

]−1
}

= −z,

z = t + is, s > c and c is a certain constant.

Theorem 16.2. If the conditions of Theorem 16.1 are fulfilled, then

lim
ν↓0

lim
B→∞

lim
C→∞

p lim
n→∞

∣∣n−1Tr(AT A)−1 −G16(B, C, 0 + iν)
∣∣ = 0.

16.3. The G16 -estimator of regularized regression models errors.
The resolvent method in the theory of experiment design,
when the design matrix is random

Let us consider the regression model

~y = X~c + ~ε, E ~ε = ~0, E ~ε~εT = Rmn , EX = A

where X is a random matrix, A is a known matrix and the distribution of the matrix
X is unknown. Only simple characteristics of this distribution are known, namely:
the entries of the matrix X are independent and their variances are equal to certain
constants. Consider a regularized estimator of parameters of this linear regression model

~cα =
(
αI + XT X

)−1
XT ~y. (16.2)

Suppose that we have performed experimental design under the random matrix X,
which does not depend on random vector ~ε. Then

~c− ~cα = ~c− {
αI + XT X

}−1
XT ~y

= ~c− {
αI + XT X

}−1
XT X~c− {

αI + XT X
}−1

XT ~ε

= α
{
αI + XT X

}−1
~c− {

αI + XT X
}−1

XT ~ε.

Suppose that the unknown vector ~c satisfies the inequality ~cT D~c ≤ 1, where D is a
positive defined symmetric matrix. Then we can use the spectral theory of estimation
of unknown parameters [Gir84] to find the following regression model error:

max
~cT D~c≤1

E (~c− ~cα) (~c− ~cα) = αλmax

{
D−1/2

{
αI + XT X

}−2
D−1/2

}

+ Tr
{
αI + XT X

}−2
XT RX.
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For simplification we have assumed D = I. Now we transform this expression to
such a form for which it will be easy to apply the methods of GSA:

max
~cT D~c≤1

E (~c− ~cα) (~c− ~cα) = α
{
α + λmin

[
XT X

]}−2

− ∂

∂γ
n−1Tr

{
αI + XT (I + γR)X

}−1

γ=0
.

For further simplification we will assume that R = In−1 and matrix x satisfies
the conditions of Theorem 16.1. Then the G16 estimator of regression model error is
introduced as follows:

G16 = α [α + β1]
−2 + α

∂bn (α)
∂α

+ bn (α) ,

where

β1 = max



0, (1− γ)

[
1− γ

m

m∑

k=1

1
αk − vs

]
+ vs

[
1− γ

m

m∑

k=1

1
αk − vs

]2


 ,

and vs are certain real solutions of the L2 equation (see Chapter 4)

1−
m∑

k=1

γ

m (αk − vi)
=

[
m∑

k=1

γ

m (αk − vi)
2

]




1− γ

1−
m∑

k=1

γ
m(αk−vi)

+ 2vi





,

αk are the eigenvalues of the matrix AAT and bn (α) satisfies the following equation

bn (α) =
1
n

Tr
{

I [1 + γbn (α)] + (1− γ) +
1

1 + γbn (α)
AAT

}−1

, γ =
mn

n
< 1.

Under certain conditions the following assertion can be proven:

Theorem 16.3. If for every n, random components of the vector ~εT = {ε1, . . . , εn} are
independent, E εi = 0, E ε2

i = n−1, i = 1, . . . , n, 0 < c1 ≤ mnn−1 ≤ c2 < 1,

αi

(
AAT

) ≤ c3, i = 1, . . . , m,D = I,

and the entries of the matrix X satisfy the conditions of Theorem 16.1, then

lim
n→∞

[
G16 − max

~cT ~c≤1
E (~c− ~cα)T (~c− ~cα)

]
= 0.

16.4. G16 -estimator of regularized regression models errors. The resolvent
method in the theory of experimental design, when the design matrix is a
realization of a certain random matrix

Let us consider the regression model
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~y = A~c + ~ε, E ~ε = ~0, E ~ε~εT = Rmn
.

In this case, in the expression

max
~cT ~c≤1

E (~c− ~cα) (~c− ~cα) = α
{
α + λmin

[
AT A

]}−2

− ∂

∂γ
n−1Tr

{
αI + AT (I + γR)A

}−1

γ=0
, α > 0.

,

a matrix A is unknown, but we know a realization of random matrix X = A + Ξ, and
we want to estimate this expression for the unknown matrix A. Here the G16-estimator
is equal to

G16 = α
[
α + Gmin

28

]−2
+ α

∂G27 (α)
∂α

+ G27 (α) ,

where the G27-estimator of Stieltjes’ transform (see Section 27)

ϕ
(
z, AAT

)
= m−1Tr

[
AAT − zImn

]−1

is by definition the following expression:

G27

(
z, XXT

)
= ϕ

(
θ̂ (z) , XXT

) [
1 + γϕ

(
θ̂ (z) , XXT

)]−1

,

θ̂ (z) is the measurable solution of the G27 equation

− θ̂ (z)
{

1 +
1
n

Tr
[
XXT − θ̂ (z) Imn

]−1
}2

+
(
1− mn

n

) {
1 +

1
n

Tr
[
XXT − θ̂ (z) Imn

]−1
}

= −z,

Gmin
28 is a consistent estimator for minimal eigenvalues αm = λmin

(
AAT

)
of the matrix

AAT which equals the minimal measurable solution x of the equation (see Section 28)

λmin

(
XXT

)
= x

{
1− Re

[
i
∫ B

0

{
e|sp|

π

∫ A

−A

ImG27 (z) e−itpdt

}
e−p(x−iε)dp

]}2

.

Under certain conditions the following assertion can be proven

Theorem 16.4. If for every n, random components of vector ~εT = {ε1, . . . , εn} are
independent, E εi = 0, E ε2

i = n−1, i = 1, . . . , n, 0 < c1 ≤ mnn−1 ≤ c2 < 1,

αi

(
AAT

) ≤ c3, i = 1, . . . , m,

and the matrix X satisfies the conditions of Theorem 16.1, then

lim
n→∞

[
G16 − α

{
α + λmin[AT A]

}−2 − ∂

∂γ
n−1Tr

{
αI + AT(I + γR)A

}−1

γ=0

]
= 0.
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17. G17-ESTIMATE OF T 2 -STATISTICS

The multi-dimensional analogue of Student’s t2 statistics is

T 2 :=
(
~a− ~̂a

)T

R̂−1
mn

(
~a− ~̂a

)

where

R̂mn = (r̂ij)
mn

i,j=1 = n−1
n∑

k=1

(~xk − ~̂a)(~xk − ~̂a)T , ~̂a = n−1
n∑

k=1

~xk,

~xk, k = 1, ..., n are independent observations of a vector ~ξ,

E ~ξ = ~a, E
(
~ξ − ~a

)(
~ξ − ~a

)T

= Rm.

From [Gir69, p.146] we obtain the limit of random variable T 2 when random vectors
~xk − ~a; k = 1, . . . , n are independent and G-condition is fulfilled.

Theorem 17.1. ([Gir69, p.146]If G-condition lim supn→∞mn−1 < 1 is fulfilled, com-
ponents ξik, i = 1, . . . , m of the vectors

~ξk = {ξik, i = 1, . . . , m}T = R−1/2
mn

[~xk − ~ak] , k = 1, . . . , n

are independent and for some δ > 0

sup
n

max
i=1,...,m;
k=1,...,n

E |ξik|4+δ
< ∞,

~aT~a < c2, λmin [Rmn ] > c3 > 0,

then

p lim
n→∞

∣∣∣∣
(
1−mn−1

) (
~a− ~̂a

)T

R̂−1
mn

(
~a− ~̂a

)
−mn−1

∣∣∣∣ = 0.

We call the expression
(
1−mn−1

) (
~a− ~̂a

)T

R̂−1
mn

(
~a− ~̂a

)
−mn−1 G17–estimate of

T 2-statistics.

18. G18-ESTIMATE OF REGULARIZED T 2 -STATISTICS

A regularized T 2-statistic is defined as follows:

T 2
ε = n(~a− ~̂a)T (Iε + R̂mn)−1(~a− ~̂a),

where ε > 0 is small number.
The G18–estimate of T 2

ε is equal to

G18 (ε) = mn−1b (ε)

where b (ε) satisfies the equation K8 (see Chapter 2, Theorem 8.1)
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b (ε) = m−1Tr Rm

{
Iε + Rm

[
1 + mn−1b (ε)

]−1
}−1

.

Theorem 18.1. ([Gir69, p.151])If the conditions of Theorem 17.1 are fulfilled, then

p lim
n→∞

[
G18 (ε)−mn−1b (ε)

]
= 0.

The case when ~x = ~̂a is considered in [Gir69, p.204-209].

19. QUASI-INVERSION METHOD FOR SOLVING G-EQUATIONS

Suppose that f(x) is a Borel function in Rmn having partial derivatives of the third or-
der. Let ~x1, . . . , ~xn be independent observations of an mn-dimensional vector ~ξ, E ~ξ =
~a. We need a consistent estimator of the value f(~a). Many problems of multivariate
statistical analysis can be formulated in these terms. If f is a continuous function we
take

~̂a = n−1
n∑

i=1

~xi

as the estimator of ~a. Then, obviously, for fixed m, p limn→∞ f(~̂a) = f(~a). But the
application of this method in solving practical problems is unsatisfactory due to the
fact that the number of observations n necessary to solve the problem with a given
accuracy increases sharply with m. It is possible to reduce significantly the number
of observations n by making use of the fact that under some conditions, including
limn→∞mn−1 = c, 0 < c < ∞, the relation

p lim
n→∞

[f(~̂a)−E f(~̂a)] = 0 (19.1)

holds. We call (19.1) and similar identities the basic relations of the G-analysis of large
dimensional observations. The methods of estimating functions of some characteristics
of random vectors would be studied by this method.

19.1. G-equations for estimators of differentiable functions of unknown
parameters

Suppose that vector ~ξ has a Normal distribution N (~a,Rmn) and consider the functions

u (t, ~z) = E f
(
~z + ~a + ~νt1/2n−1/2

)
, (19.2)

where t > 0 is a real parameter, ~z ∈ Rmn , and ~ν is a Normal N(0, Rmn) random vector.
Suppose that the integrals

E
∂2

∂zi∂zj
f

(
~z + ~a + ~νt1/2n−1/2

)

exist. Let us find the differential equation for the function u(t, ~z). We note that ~ν(t +
∆t)1/2 ≈ ~νt1/2 +~ν1(∆t)1/2, where ∆t ≥ 0, ~ν1 is a random vector which does not depend
on the vector ~ν and ~ν ≈ ~ν1. Then
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∂

∂t
u (t, ~z) = lim

∆t↓0
1

∆t
E

[
f

(
~z + ~a + n−1/2

(
~νt1/2 +~ν1(∆t)1/2

))

−f
(
~z + ~a + n−1/2~νt1/2

)]
.

Then, by using the expansion of the function f in a Taylor series

f
(
~a + ~h

)
− f(~a) =

s∑

k=0

(
mn∑

i=1

∂

∂ai
hi

)k

f(~a) + o
(∥∥∥~h

∥∥∥
)

we obtain that the functions u (t, ~z) satisfy the equation

∂

∂t
u (t, ~z) = Au (t, ~z) ; A =

1
2n

mn∑

i,j=1

rij
∂2

∂zi∂zj
(19.3)

u (1, ~z) = E f
(
~z + ~̂a

)
, u (0, ~z) = f (~z + ~a) ,

where rij are the entries of the matrix Rmn . Suppose that the random vector ~ξ has

arbitrary distribution with Rmn = E
(
~ξ − ~a

)(
~ξ − ~a

)T

. Let

αn

(
kn−1, ~z

)
= E f

{
~z + ~a + n−1

k∑
p=1

(~xp −E ~xp)

}
,

un (t, ~z) = αn

(
kn−1, ~z

)
, kn−1 ≤ t < (k + 1)n−1; k = 1, . . . , n,

lim
n→∞

nE
∫ 1

0

(1− t2)

[
1
n

mn∑

i=1

(~xi − ~ai)
(

∂

∂zi

)]3

× f

{
~z + ~a+

1
n

k−1∑

i=1

(~xi − ~ai) +
t

n
(~xk − ~ak)

}
dt = 0.

Then, by using the expansion of the function f in a Taylor series, we obtain

n

[
αn

(
k

n
, ~z

)
− αn

(
k − 1

n
, ~z

)]

=
1
2n

mn∑

i,j=1

rij
∂2

∂zi∂zj
αn

(
k − 1

n
, ~z

)
+ εn,

(19.4)

where limn→∞ εn = 0.

From equation (19.4) we have

un (t, ~z) = un (0, ~z) +
∫ t

0

1
2n

mn∑

i,j=1

rij
∂2

∂zi∂zj
un (y, ~z) dy + εn. (19.5)
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19.2. G-equation of higher orders

Let f(~x), ~x ∈ Rmn be the Borel function with mixed particular derivatives of order p

inclusively; let ~ξ, E ~ξ = ~a be a certain mn-dimensional random vector and let ~x1, . . . , ~xn

be independent observations of the vector ~ξ.
If, for every ~z ∈ Rmn and k = 1, . . . , n

lim
n→∞

nE
∫ 1

0

(1− t)p−1

(p− 1)!

(
1
n

mn∑

i=1

(xik − ai)
∂

∂zi

)p

× f

(
~z + ~a +

1
n

k−1∑

i=1

(~xi − ~a) +
t

n
(~xk − ~a)

)
dt = 0,

sup
~z∈Rmn

E

∣∣∣∣∣f
(

~z + ~a +
1
n

k−1∑

i=1

(~xi − ~a)

)∣∣∣∣∣ < ∞,

then

ϕn (t, ~z) = f (~z + ~a) +
∫ t

0

Bϕn (y, ~z) dy + εn;

ϕn (1, ~z) = E f
(
~z + ~̂a

)
,

(19.6)

where

ϕn (t, ~z) = E f (~z + ~a + ~νk) ,
k

n
≤ t <

k + 1
n

; k = 1, . . . , n− 1,

~νk =
1
n

k∑

i=1

(~xi − ~a),

B =
p−1∑

l=1

1
l!
E

(
1
n

mn∑

i=1

(xi1 − ai)
∂

∂zi

)l

.

19.3. G-equation for functions of the empirical vector of expectations
and the covariance matrix

Let us find the G-equations for the differentiable functions ϕn

(
~̂a, R̂mn

)
of the empirical

vector ~̂a and the covariance matrix R̂mn which are obtained by independent normally
distributed N (~a,Rmn) observations ~x1, . . . , ~xn.

Consider the functions

un (t, ~z,Xmn) = ϕ
{
~a + ~z + R1/2

mn
~ηnn−1/2, Rmn + Xmn

+R1/2
mn

k∑
s=1

(
1

n− 1
~ηs~η

T
s − I

)
R1/2

mn

}
,

where ~ηs are independent mn-dimensional random Normal law N(0, I) vectors , and
Xmn = (xij) is a matrix of the parameters of the same order as the matrix Rmn .

If the functions un (t, ~z, Xmn) can be represented as
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un

(
k

n
, ~z, Xmn

)
− un

(
k − 1

n
, ~z, Xmn

)
= Aun

(
k − 1

n
, ~z, Xmn

)
+

εn

n
,

where

A =
1
2n

mn∑

i,j,p,l=1

E
(

R1/2
mn

~ηs~η
T
s − I

n− 1
R1/2

mn

)

ij

×
(

R1/2
mn

~ηs~η
T
s − I

n− 1
R1/2

mn

)

pl

∂2

∂xij∂xpl
+

1
2n

mn∑

i,j=1

rij
∂2

∂zi∂zj
;

then we obtain the equation

ψn (t, ~z, Xmn) = ϕ (~z + ~a,Xmn + Rmn)

+
∫ t

0

Aψn (y, ~z, Xmn
) dy + εn,

ψn (1, ~z, Xmn
) = Eϕ

(
~z + ~̂a,Xmn

+ R̂mn

)

for the functions

ψn (t, ~z,Xmn) = un

(
k

n
, ~z,Xmn

)
;

k

n
≤ t <

k + 1
n

.

19.4. G-equation for functions of empirical expectations

Let

un

(
kn−1, ~z

)
= E f

(
~z + ~a + n−1

k∑
p=1

(~xp −E ~xp)

)
,

ψn (t, ~z) = un

(
k

n
, ~z

)
,

k

n
≤ t <

k + 1
n

; k = 1, . . . , n.

If the limit exists,

lim
n→∞

{
n

[
u

(
k

n
, ~z

)
− u

(
k − 1

n
, ~z

)]
− θ

(
u

(
k

n
, ~z

))}
= 0,

where θ(y) is a certain continuous function on [0,1], then for the functions ψn(t, ~z) we
have

ψn (t, ~z) = ϕ (~z + ~a) +
∫ t

0

θ {ψn (y, ~z)}dy + εn.

We deduce the finding of G-estimators of the functions f (~a) to solution of the inverse
problem for equation (19.5). The latter consists of finding αn (0, z) by the function
αn (1, z) , which is replaced by the function f

(
~z + ~̂a

)
based on observations of the

random vector ~ξ. Of course, the solution of the inverse problem with such a replacement
cannot exist in the class of functions W

(0,2)
2 . Therefore, it appears expedient to find a

generalized solution of the estimation problem of function f (~a) .
Let ψ (~x) ∈ L2 and let the functional



594 Chapter 14

I (ϕ) =
∫

D

|αn (1, ~x, ϕ (·))− ϕ (~x)|d~x (19.7)

be determined by the functions ϕ (~x) ∈ W
(0,2)
2 . Here D is a domain on m-dimensional

Euclidean space, which is bounded by the piecewise smooth surface S, and αn (1, ~x, ϕ (·))
is the solution of the equation

αn (t, ~x, ϕ (·)) = ϕ (~x) +
∫ t

0

1
2n

m∑

i,j=1

rij
∂2

∂xi∂xj
αn (u, ~x, ϕ (·)) du + o (1) ,

at the point t = 1. The function ϕ̂ (~x) is the solution of the inverse problem if

inf
ϕ(·)∈W

(0,2)
2

I (ϕ) = I (ϕ̂) .

To solve this problem, we proceed as follows. First, we solve the direct problem

αn (t, ~x, ϕ (·)) = ϕ (~x) +
∫ t

0

Aαn (u, ~x, ϕ (·)) du + o (1) ,

where

A =
1
2n

m∑

i,j=1

rij
∂2

∂xi∂xj
, αn (u, ~x, ϕ (·)) = 0, ∈ S.

Here S is the piecewise smooth boundary of a connected domain D and

αn (1, ~x, ϕ (·)) = ψ (~x)

is a given function. Then we have an approximate value for the initial condition of the
function ϕ(x). It is quite possible that, in general, such a problem has no solution for the
given function. Therefore, it is appropriate to solve the inverse problem approximately
with the help of the so-called quasi-inversion method. Thus, we consider the following
equation

∂u (t, ~z)
∂t

= Aδu (t, ~z) , u (1, ~z) = αn (1, ~z) (19.8)

instead of equation (19.5); here Aδ is some operator similar in some sense, to the
operator A and such that the solution of equation (19.8) is stable. We can choose

Aδ = A + δA2, δ > 0.
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19.5. Estimator G19 of regularized function of unknow parameters

By obtaining the solution of equation (19.6), we can apply the spectral theory of the
operator Aδ. Its spectrum is, however, continuous. Therefore, it would be better to
replace operator A by an operator Aε, such that its spectrum is discrete and whose
eigenfunctions form the complete orthonormal basis in the Hilbert space L2. For exam-
ple, instead of such an operator A, we can choose

Aε = A + εq (~z) + δ [A + εq (~z)]2 , ε, δ > 0,

where q (~z) is any measurable function such that the operator A + εq (~z) , ~z ∈ Rm

satisfies the above mentioned condition. From the operator spectral theory, it follows
that instead of function q (~z) we can choose any measurable function such that

lim
‖~z‖→∞

q (~z) = ∞.

Let λk (ε) and ϕkε (~z) , k = 1, 2, ... denote the eigenvalues and eigenfunctions of the
operator A + εq (~z) , ~z ∈ Rm, respectively Now we can give the main form of G19-
estimators of function f (~a) ;

G19 = exp
{
Aδ − εA2

δ

}
f

(
~̂α + ~z

)
~z=0

=
∞∑

k=0

exp
{
λk (ε)− δλ2

k (ε)
} ∫

f
(
~̂α + ~z

)
ϕk (~z) d~zϕk

(
~0
)

,

where

Aε =
1
2

m∑

i,j=1

∂2

∂zi∂zj
E

(
~̂α− ~α

)
i

(
~̂α− ~α

)
j
+ εq (~z) ; ε > 0, δ > 0,

and q (~z) is any continuous function satisfying the condition

lim inf
n→∞

lim
‖~z‖→∞

q (~z) = ∞.

20. ESTIMATOR G20 OF REGULARIZED FUNCTION OF UNKNOWN

PARAMETERS

When function ϕn(t, ~z) satisfies equation (19.6), we use the following operator in equa-
tion (19.8),

Aε = B + εq (~z) + δ [B + εq (~z)]2 , ε, δ > 0.

Here q (~z) is any measurable function such that the operator B + εq (~z) , ~z ∈ Rm

satisfies the above mentioned condition,

B =
p−1∑

l=1

1
l!
E

(
1
n

mn∑

i=1

(xi1 − ai)
∂

∂zi

)l

.

From the operator spectral theory, it follows that instead of function q (~z) we can
choose any measurable function such that
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lim
‖~z‖→∞

q (~z) = ∞.

Let λk (ε) and ϕkε (~z) , k = 1, 2, ... denote the eigenvalues and eigenfunctions of
the operator B + εq (~z) , ~z ∈ Rm, respectively. Now we can give the main form of
G20-estimators of function f (~a) ;

G20 = exp {Aε} f
(
~̂α + ~z

)
~z=0

=
∞∑

k=0

exp
{
λk (ε)− δλ2

k (ε)
} ∫

f
(
~̂α + ~z

)
ϕk (~z) d~zϕk

(
~0
)
.

21. G21-ESTIMATOR IN THE LIKELIHOOD METHOD

The discussion of this section shows how G-estimators can be constructed from any
stochastic experiments. Let ~xk, k = 1, . . . , n be independent observations of vector
~ξ which has a density p (~α, ~x) , ~x = {x1, . . . , xm}T

, where ~α = {α1, . . . , αl}T is an
unknown vector. The likelihood method consists in the following: as an estimator of
vector ~α = {α1, . . . , αl}T

, we accept any measurable solution ~̂α of the equation

sup
~α∈A

Ln (~α) = Ln

(
~̂α
)

,

where

Ln (~α) =
n∏

k=1

p (~α, ~xk)

is the likelihood function. For large dimensional unknown vectors ~α = {α1, . . . , αl}T
,

we consider in this section the general likelihood method or G-Method. In this method
we make two assumptions: 1. Instead of estimation of vector ~α = {α1, . . . , αl}T we
consider the estimation problem of density p (~α, ~x) , ~x = {x1, . . . , xm}T or a certain
functional of this density. This assumption is valid in many important practical prob-
lems. II. Instead of one sample of observations ~xk, k = 1, . . . , n we consider the scheme
of series of samples sequence. The number of unknown parameters m and the number
of observations n are related so that the following G-condition is fulfilled:

lim sup
n→∞

mnn−1 < ∞.

Now we give the main form of G-estimators of density p (~α, ~x) :

G21 (~x) = exp
{
Aδ − εA2

δ

}
p

(
~̂α + ~z, ~x

)
~z=0

=
∞∑

k=0

exp
{
λk (ε)− δλ2

k (ε)
} ∫

p
(
~̂α + ~z, ~x

)
ϕk (~z) d~zϕk

(
~0
)
,

where ~̂α is the estimator obtained by the likelihood method, λk (ε) and ϕkε (~z) , k =
1, 2, ... denote the eigenvalues and eigenfunctions of the operator A + εq (~z) , ~z ∈ Rm,
respectively
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Aε =
1
2

m∑

i,j=1

∂2

∂zi∂zj
E

(
~̂α− ~α

)
i

(
~̂α− ~α

)
j
+ εq (~z) ; ε > 0, δ > 0,

and q (~z) is any continuous function satisfying the condition

lim inf
n→∞

lim
‖~z‖→∞

q (~z) = ∞.

Here we mention some new properties of the G21-estimators we have thus derived:

I. Under the G-condition and some conditions for the density p(~α, ~x), these G21-
estimators are consistent and even asymptotically normal.

II. Under the G–condition the standard estimators of the likelihood method lose their
asymptotic properties. The G21-estimators of density p(~α, ~x) have a complicated
form, but for some cases it can be see that a new estimator of ~α in the expression
for the G21–estimator depends on vector ~x = {x1, . . . , xm}T

.

Let us consider one example. Because it is very difficult to find a simple evident
expression for the G21-estimator, let

p (~α, ~x) = (2π)−mn/2 exp
{
−‖~α− ~x‖2 /2

}
, ~α ∈ Rmn , ~x ∈ Rp.

Then the likelihood estimator of vector ~α is equal to

~̂α = n−1
n∑

k=1

~xk.

Putting this estimator in the density p (~α, ~x) , we get

p
(
~̂α, ~x

)
= (2π)−mn/2 exp

{
−‖~α− ~x‖2

2
+

(~α− ~x)T
~η√

n
− ‖~η‖2

2n

}
,

where ~η =
(
~̂α− ~α

)√
n.

Obviously, if

lim
n→∞

mnn−1 = c, 0 < c < ∞; lim sup
n→∞

‖~α− ~x‖2 n−1 = 0, (21.1)

then

lim
n→∞

E


p

(
~̂α, ~x

)

p (~α, ~x)
− 1




2

=
[
e−c/2 − 1

]2

> 0.

But if we take the G21-estimator

G
(
~̂α, ~x

)
= p

(
~̂α, ~x

)
ec/2

of the density p (~α, ~x) , we will have under the same condition (21.1):
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lim
n→∞

E


G21

(
~̂α, ~x

)

p (~α, ~x)
− 1




2

= 0.

It is easy to see that the G21-estimator is much better than the standard likelihood
estimator.

22. G22-ESTIMATOR IN THE CLASSIFICATION METHOD

Certain problems of classification can be formulated in the following way: let Borel
functions fn (x1, . . . , xn, θ) of sample observations x1, . . . , xn and unknown parameter
θ be given. We need conditions on the function fn (x1, . . . , xn, θ) and the distribution
of x1, . . . , xn such that the measurable solution θ of equations

fn (x1, . . . , xn, θ) = 0; or sup
θ

fn (x1, . . . , xn, θ) = fn

(
x1, . . . , xn, θ̂

)

converges in probability to the corresponding solution θ of equations

E fn (x1, . . . , xn, θ) = 0; or sup
θ

E fn (x1, . . . , xn, θ) = E fn

(
x1, . . . , xn, θ̂

)
.

If the densities p (x, θ) of the random variables x1, . . . , xn exist and

fn (x1, . . . , xn, θ) =
n∑

k=1

ln p (xk, θ)

then this problem is known as the problem of the method of the maximum likelihood
method.

22.1. Integral representation method. Limit theorems of the type of the law
of large numbers

One of the important problems of classification theory is the problem of finding

sup
~α∈A

∫
f (~α, ~x) dF (~x),

where f (~α, ~x) , ~x ∈ Rm, ~α ∈ Rs is some measurable function, F (~x) is a multivariate
distribution function and A is some measurable set. Suppose that the point ~α0, at which
the function

∫
f (~α, ~x) dF (~x) attains its maximal value, is unique. This proposition is

equivalent to the equation,

sup
~α∈A

∫
f (~α, ~x) dF (~x) =

∫
f (~α0, ~x) dF (~x), (22.1)

having a unique solution. In many problems the function F (~x) is unknown and one uses
an empirical distribution function obtained from n independent observations ~x1, . . . , ~xn

of the random vector ~ξ. Then, instead of equation (22.1), we get the equation

sup
~α∈A

n−1
n∑

k=1

f (~α, ~xk) = n−1
n∑

k=1

f
(
~̂α, ~xk

)
. (22.2)
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Consequently, the problem is reduced to finding the extreme of the empirical function
and conditions when p lim

n→∞
~̂α = ~α0, and proving that the asymptotic distribution of the

vectors (~̂α− ~α0)cn, under some normalization, is normal. The integral representation
method of the proof of limit theorems for the extremum of empirical functions is based
on the proposition that the function f (~α, ~x) can be represented in the following form

f (~α, ~x) =
∫

exp
(
i~αT ~y

)
p (~y, ~x) d~y; ~y ∈ Rs, (22.3)

f (~α, ~x) =
∫

exp
(
i~xT ~y

)
q (~y, ~α) d~y; ~y ∈ Rm, (22.4)

where p and q are absolutely integrable functions, or in the form of convergent series

f (~α, ~x) =
∞∑

k=1

ck (~α) ϕk (~x) , f (~α, ~x) =
∞∑

k=1

dk (~x)ψk (~α) , (22.5)

where ϕk, ψk are some sequences of orthonormalized systems of functions:

ck (~α) =
∫

f (~α, ~y)ϕk (~y) d~y; dk (~x) =
∫

f (~α, ~x)ψk (~α) d~α .

We note that sometimes a function f can also be represented in the form of a Stieltjes’
integral

f (~α, ~x) =
∫

exp
(
i~αT ~y

)
dG (~y, ~x) ; ~y ∈ Rs;

f (~α, ~x) =
∫

exp
(
i~xT ~y

)
dK (~y, ~α) d~y; ~y ∈ Rm,

where G and K are functions of bounded variation. Using, for example, formula (22.4)
we can reduce equation (22.2) to the form

sup
~α∈A

n−1
n∑

k=1

f (~α, ~xk) =
∫

q (~y, ~α)

{
n−1

n∑

k=1

exp
(
i~xT

k ~y
)
}

d~y. (22.6)

On the right-hand side of this equality we have the sum of independent random
variables, for which the limit theorems can be used. On the basis of this equation the
following assertion is proved in [Gir44, p. 133–141].

Theorem 22.1. Let ~x1, . . . , ~xn be independent observations of a random vector ~ξ, and
suppose that a function f is represented in the form of the integral (22.4), equation
(22.1) has a unique bounded solution ~α0, and

∫
sup
~α∈A

|q (~y, ~α)|
[
1− ∣∣E exp

(
i~xT

1 ~y
)∣∣2

]1/2

d~y < ∞.

Then p lim
n→∞

~̂αn = ~α0, where ~̂αn is any measurable solution of equation (22.2).

Following the main principles of GSA, we introduce here the G22 estimator of function
f (~α) =

∫
p (~αn, ~x) dF̂ (~x) :
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G22 =
[
exp

{
Aε + δA2

ε

} ∫
p

(
~̂αn + ~z, ~x

)
dF̂ (~x)

]

~z=~0

,

where

Aε =
1
2

m∑

i,j=1

∂2

∂zi∂zj
E

(
~̂α− ~α

)
i

(
~̂α− ~α

)
j
+ εq (~z) ; ε > 0, δ > 0,

and q (~z) is any continuous function satisfying the condition

lim inf
n→∞

lim
‖~z‖→∞

q (~z) = ∞.

23. G23-ESTIMATOR IN THE METHOD OF STOCHASTIC APPROXIMATION

The problem of stochastic approximation can be formulated in the following way: Sup-
pose that in the space Rmn there are defined functions ~fk (~x) , ~x ∈ Rmn , ~f (~x) =
{fk (~x) , k = 1, . . . , qn}T . The goal is to find the solution of the system of equations
~f (~x) = ~0. Suppose that in every point ~x ∈ D ∈ Rmn we can calculate vector func-
tion ~f (~x) with certain random errors. Observations ~ξ (~xs) , s = 1, 2 . . . ; ~ξ (~xs) =
{ξk (~xs) , k = 1, . . . , qn}T of vectors ~f (~xs) + ~ηs, s = 1, 2 . . . , where ~ηs, s = 1, 2, . . .
are certain random vectors, are available. It is necessary with the help of these obser-
vations to find a sequence of the points converging on probability to the solution of the
system of equation ~f (~x) = ~0.

According to the Robbins-Monro procedure we choose the following sequence of the
points ~xs ∈ Rmn satisfying the system of recurrence equations:

(~xs+1 − ~xs)α−1
s = ~ξ (~xs) , ~x1 ∈ D ∈ Rmn , (23.1)

where αs is a certain sequence of numbers.
Let us estimate the rate of convergence of the sequence ~xp+1 to the solution of the

system of equations ~f (~x) = ~0. Suppose that there exists the unique solution ~x0 of this
system of equations and that in the neighborhood of this solution

(~xp+1 − ~xp) = (~xp − ~x0) + αpΞp (~x− ~x0) . (23.2)

where Ξk are random matrices, EΞk = B.
Using (23.2) and (23.1) we get
Denote ~yp+1 = (~xp+1 − ~xp) γp+1, where γp+1 is a normalizing sequence. Then

~yp+1 = γp+1γ
−1
p [Imn + αpΞp] ~yp = ~y0

p∏
s=0

{
γs+1γ

−1
s [Imn + αsΞs]

}
.

We can now use for this product of random matrices the G42-estimator when mp−1 →
c (see Section 42). The obtained estimator will be denoted as G23.
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24. CLASS OF ESTIMATORS G24, WHICH MINIMIZES CERTAIN

MEAN-SQUARE RISKS

Let ~ξT = {ξ1, . . . , ξmn} be a random Normal N
(
~a, σ2Imn

)
vector; assume that ~xs;

s = 1, 2, . . . , n are independent observations of vector ~ξ. Obviously

~̂a = n−1
n∑

k=1

~xk

is an unbiased estimator of vector ~a and

E
(
~̂a− ~a

)T (
~̂a− ~a

)
= σ2mnn−1.

C. Stein [St1–3] has proposed a method to find estimators ~̃a such that

E
(
~̃a− ~a

)T (
~̃a− ~a

)
< σ2mnn−1.

His method consists in the following: let us consider estimators

~̃a = ~̂a + n−1~g
(
~̂a
)

,

where ~x ∈ Rmn , ~g (~x) ∈ Rmn . It is easy to verify that

E
(
~̂a− ~a

)T (
~̂a− ~a

)
−E

{
~̂a + n−1~g

(
~̂a
)
− ~a

}T {
~̂a + n−1~g

(
~̂a
)
− ~a

}

= − 2
n
E

(
~̂a− ~a

)T

~g
(
~̂a
)
− n−2E~gT

(
~̂a
)

~g
(
~̂a
)

.

Using this equality we have

E
(
~̂a− ~a

)T (
~̂a− ~a

)
−E

{
~̃a− ~a

}T {
~̃a− ~a

}

=
2
n2

E
mn∑

i=1

∂g
(
~̂a
)

∂xi
− n−2E~gT

(
~̂a
)

~g
(
~̂a
)

.

(24.1)

Suppose that function ~g
(
~̂a
)

is equal to

~g (~x) = grad [ln ϕ (~x)] ,

where ϕ (~x) , ~x ∈ Rmn is a twice differentiable function. For this function the following
equality is valid

mn∑

i=1

∂gi (~x)
∂xi

=
mn∑

i=1

∂

∂xi

[
1

ϕ (~x)
∂ϕ (~x)
∂xi

]
= −~gT (~x)~g (~x) + ϕ (~x)∆ϕ (~x) .

Here

∆ =
mn∑

i=1

∂2

∂x2
i
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is the Laplace operator. Using this equality and (24.1) we get

E
(
~̂a− ~a

)T (
~̂a− ~a

)
−E

{
~̃a− ~a

}T {
~̃a− ~a

}

= n−2E~gT
(
~̂a
)

~g
(
~̂a
)
− n−2E

[
ϕ

(
~̂a
)]−1

∆ϕ
(
~̂a
)

.

The right part of this equality is positive if ∆ϕ
(
~̂a
)
≤ 0. Such functions are called

superharmonic functions and do not exist on the real line or on the complex plane.
Therefore, in these two cases the Stein method does not give improvement of the esti-
mator ~̂a. But if mn ≥ 3, then such superharmonic functions exist.

In G-analysis one of the axioms requires that we estimate some functions of param-
eters with unknown distribution. Nevertheless, using the G-analysis methods, we can
try to find some estimators which minimize certain risk functions. We will denote such
estimators by the symbol G24. Consider several examples:

24.1. The risk function of the estimator of inverse covariance matrix R−1

The risk function of the estimator of inverse covariance matrix R−1 is equal to

m−1
n ETr

{
R−1

mn
−G

}2
,

where estimator G is a certain matrix function of observations ~x1, . . . , ~xn of a random
vector with the covariance matrix Rmn . In the Section 3 it was proved that we can
consider the estimator G3 = R̂−1

mn

[
1−mnn−1

]
, where R̂mn is the standard empiri-

cal covariance matrix. For such estimator and the standard estimator under certain
conditions

m−1
n ETr

{
R−1

mn
−G3

}2
< m−1

n ETr
{

R−1
mn

− R̂−1
mn

}2

.

24.2. The Stein’s risk function

We can use G–estimators G1 and G3 for the minimization of the Stein’s risk function

TrR−1
mn

G− ln det R−1
mn

G + mn.

The obtained estimator we call the G24–estimator.

25. G25- ESTIMATOR OF THE STIELTJES TRANSFORM OF THE PRINCIPAL

COMPONENTS

Let λk, ~ϕk; k = 1, . . . , m be eigenvalues and corresponding eigenvectors of the covari-
ance matrix Rm. Consider the spectral function

νm (x) =
m∑

k=1

(
~aT ~ϕk

) (
~bT ~ϕk

)
χ (λk < x),

where ~a, ~b are m-dimensional vectors. We call ~xT ~ϕk a k-th principal value. Here ~x is
an observation of a random vector with the covariance matrix R. Consider Stieltjes’
transform of the spectral function νm (x) :

∫ ∞

0

(1 + tx)dνm (x) = ~aT (I + tRmn)−1~b.
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The G25 estimator for the quadratic forms of resolvents of covariance matrices

~aT
(
I + tR̂mn

)−1
~b is equal to: G25 = ~aT

(
I + θR̂mn

)−1
~b, where θ is the positive

solution of the equation

θ

[
1−mnn−1 + n−1Tr

(
I + θR̂mn

)−1
]

= t; t > 0.

26. G26 - ESTIMATOR OF EIGENVALUES OF THE COVARIANCE MATRIX

Let µmn ≤ . . . ≤ µ1 be the eigenvalues, let ~hi, i = 1, . . . , mn; h1i > 0 be the eigenvectors
of the covariance matrix Rmn

and let the vectors ~x1, . . . , ~xn be observations of a random
vector ~ξ distributed according to the Normal law N (~a, Rmn

). Here R̂mn
is the empirical

covariance matrix

R̂mn
= (n− 1)−1

n∑

k=1

(xk − â)(xk − â)T

and â is the empirical expectation:

â = n−1
n∑

k=1

xk.

It is well known that the maximal likelihood estimators of the simple eigenvalues
µmn < ... < µ1 and corresponding orthonormal eigenvectors ~hi, i = 1, . . . , mn; h1i > 0
of the matrix Rmn and of the vector ~a obtained from independent vectors ~x1, . . . , ~xn

which are observations of a random Normal N (~a,Rmn) vector ~ξ are equal to ([And1])

µmn

(
R̂mn

)
≤ ... ≤ µ1

(
R̂mn

)
, hi

(
R̂mn

)
, ~̂a, i = 1, ...,mn.

In view of the optimal properties of these estimates, it seems that the problem of
asymptotic estimation of the simple eigenvalues µmn < ... < µ1 and the eigenvectors

~hi, i = 1, . . . , mn; h1i > 0

has been solved. And this is indeed so, if m is small and does not depend on n .
For large values of m, one can try to reduce the bias of these estimates by using the
“jackknife method” or the “bootstrap method”. These methods do not give a clear
analytic formula, although they involve a large number of computer calculations. The
question arises as to whether all the estimates of the eigenvalues µi are necessary to
the solution of practical problems. An analysis of many problems suggests that they
are not all necessary. But then one can try to use G-analysis methods [Gir40, Gir41,
Gir50, Gir51, Gir53, Gir55, Gir57, Gir58] to find consistent estimates of a finite number
of eigenvalues µi that do not depend on n under the condition

lim sup
n→∞

mnn−1 < 1.
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26.1. The criticism of the multivariate statistical analysis. G2-estimator
for Stieltjes’ transform of the normalized spectral function of covariance
matrices

In this section we consider an important problem of G-analysis, namely, that of estima-
tion of the eigenvalues of a covariance matrix. In spite of many studies of eigenvalues
of random matrices we do not have good estimators for them. Indeed, we do not have
any information on eigenvalues. Therefore, it is very difficult to apply the perturbation
formulas to find these estimators. Let Rm be a covariance matrix, λk; k = 1, . . . ,m
and let ~ηk; k = 1, . . . , m be its eigenvalues and the corresponding eigenvectors, chosen
in such a way that they are random variables. We consider a new spectral function

νn (x,Rmn
) =

m∑

k=1

~aT ~ηk~ηT
k
~bχ (λk < x) ,

where ~a and ~b are any nonrandom real vectors of dimension m. Such a spectral function
contains all information about eigenvalues and eigenvectors. With its help, we can find
new (more precise) estimators for the principal values and the eigenvalues of the covari-
ance matrix Rm by the independent observations of the random vector ~ξ. Note that
with the help of this estimator we can significantly decrease the number of observations
required to solve practical estimation problems of principal values for large values of m.
The criticism of the multivariate statistical analysis of large-dimensional observations
was due to the fact that the error of estimates in this analysis usually is mn−1/2 or√

mn−1/2, where m is the number of parameters to be estimated, and n is the number
of observations. It is evident that the number of observations needed for estimation
with given accuracy increases sharply with the growth of m. Hence, multivariate sta-
tistical analysis does not help us to solve practical problems involving observations on
large-dimensional vectors. After many years of research, it appears that under the G -
condition

lim sup
n→∞

mnn−1 < ∞,

consistent and asymptotically normal estimates of many functions ϕ (Rmn) do not exist.
However, by the developed matrix spectral theory, we can establish that they do exist
under the G- condition

lim sup
n→∞

mnn−1 < ∞, p lim
n→∞

[
ϕ

(
R̂mn

)
− ψ (Rmn)

]
= 0,

where ψ is some known measurable function of the matrix Rmn entries. This equation
will be called the G-equation. This is the principal statement making up the basis of the
G-analysis of observations of large dimensions. We must recall that the G2-consistent
estimator for the trace of resolvents of covariance matrices

m−1
n Tr

(
R̂mn − zImn

)−1

, z = t + is, s > 0

has the form:
G2 (z) = z−1θ̂ (z)m−1

n Tr
{

R̂mn − θ̂ (z) Imn

}−1

,

where θ̂ (z) is the measurable solution of the equation
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θ̂ (z)
1
n

Tr
{

R̂mn
− θ̂ (z) Imn

}−1

−
(
1− mn

n

)
+

θ̂ (z)
z

= 0.

The solution of the problem of finding the G26-estimator of the eigenvalues λi turned
out to be extremely complex. For example, the Gmax

26 (A,B, ε) -consistent estimator
for the maximal eigenvalue λ1 (Rm) of covariance matrix Rm is equal to a maximal
measurable solution x of the equation

λ1

(
R̂mn

)
= xRe

{
1− γ − γx

[
i
∫ B

0

{
e|sp|

π

∫ A

−A

Im G2 (z) e−itpdt

}
e−p(x−iε)dp

]}
,

where γ = mnn−1,

G2 (z) = z−1θ̂ (z)m−1
n Tr

{
R̂mn

− θ̂ (z) Imn

}−1

,

z = t + is, s > c > 0, c is a certain constant, θ̂ (z) is the measurable solution of the
equation

θ̂ (z)
1
n

Tr
{

R̂mn − θ̂ (z) Imn

}−1

−
(
1− mn

n

)
+

θ̂ (z)
z

= 0.

Similarly we defined the Gmin
26 (A,B, ε) -consistent estimator for minimal eigenvalue

λm (Rm) of covariance matrix Rmn , which is equal to a minimal measurable solution x
of the equation

λmn

(
R̂mn

)
= x

{
1− γ − γxRe

[
i
∫ B

0

{
e|sp|

π

∫ A

−A

Im G2 (z) e−itpdt

}
e−p(x−iε)dp

]}
,

where

G2 (z) = z−1θ̂ (z) m−1
n Tr

{
R̂mn − θ̂ (z) Imn

}−1

z = t + is, s > c > 0, c is a certain constant, θ̂ (z) is the measurable solution of the
equation

θ̂ (z)
1
n

Tr
{

R̂mn − θ̂ (z) Imn

}−1

−
(
1− mn

n

)
+

θ̂ (z)
z

= 0.

Theorem 26.1. [Gir40, Gir41, Gir50, Gir53, Gir55, Gir57, Gir58] Suppose
~x1, . . . , ~xn is the sample of independent observations of a random vector,

~xk = R1/2
mn

~ξk + ~a, E ~ξk = 0, E ~ξk
~ξT
k = Imn , ~ξT

k = {ξik, i = 1, ..., mn } , (26.1)

random variables ξik are independent and for a certain δ > 0

E |ξik|4+δ ≤ c < ∞, (26.2)
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λi(Rmn
) < c < ∞, i = 1, ...,mn, (26.3)

lim inf
n→∞

mnn−1 > 0, lim sup
n→∞

mnn−1 < 1, (26.4)

λ1 (Rmn) > λk (Rmn) + τ ; τ > 0, k = 2, ..., m; n = 1, 2, ..., (26.5)

lim sup
n→∞

1
n

m∑

k=2

λ2
k (Rmn

)
[λk (Rmn)− λ1 (Rmn)]2

< 1, (26.6)

and with probability one

lim inf
ε↓0

lim inf
n→∞

∣∣∣∣∣1−
1
n

Re
m∑

k=2

λk (Rmn
)

λk (Rmn)−Gmax
26 (A,B, ε)− iε

+
1
n

Re
m∑

k=2

Gmax
26 λk (Rmn)

[λk (Rmn)−Gmax
26 (A,B, ε)− iε] [λk (Rmn)− λ1 (Rmn)− iε]

∣∣∣∣∣ > 0.

(26.7)

Then

lim
ε↓0

lim
B→∞

lim
A→∞

p lim
n→∞

[Gmax
26 (A,B, ε)− λ1 (Rmn)] = 0. (26.8)

Theorem 26.2. Suppose that conditions (26.1)-(26.4) are fulfilled

λmn (Rmn) < λk (Rmn) + τ ; τ > 0, k = 1, . . . , mn − 1; n = 1, 2, ...,

lim inf
n→∞

1
n

mn−1∑

k=1

λ2
k (Rmn)

[λk (Rmn)− λmn (Rmn)]2
< 1,

and with probability one

lim inf
ε↓0

lim inf
n→∞

∣∣∣∣∣1−
1
n

Re
mn−1∑

k=1

λk (Rmn)
λk (Rmn)−Gmin

26 (A, B, ε)− iε

+
1
n

Re
mn−1∑

k=1

Gmin
26 (A, B, ε)λk (Rmn)[

λk (Rmn)−Gmin
26 (A,B, ε)− iε

]
[λk (Rm)− λmn (Rmn)− iε]

∣∣∣∣∣ > 0.

Then

lim
ε↓0

lim
B→∞

lim
A→∞

p lim
n→∞

[
Gmin

26 (n, A,B, ε)− λmn (Rmn)
]

= 0.
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27. G27 - ESTIMATORS OF EIGENVECTORS CORRESPONDING TO EXTREME

EIGENVALUES OF THE COVARIANCE MATRIX

Let λ1 (Rmn
) ≥ · · · ≥ λmn

(Rmn
) be the eigenvalues and ~ϕ1 (Rmn

) , · · · , ~ϕn (Rmn
) be

the corresponding orthonormal eigenvectors of the covariance matrix Rmn =
(
r
(n)
ij

)n

i,j=1

and the first nonzero component of every eigenvector is positive. Consider the G-spectral
function

νn

(
x, Rmn

,~b,~c
)

=
mn∑

k=1

[
~cT ~ϕk (Rmn

)
] [

~bT ~ϕk (Rmn
)
]
χ [λk (Rmn

) < x],

where ~b and ~c are arbitrary mn-dimensional vectors.
The G27

{
Rmn

,~b,~c
}

-consistent estimator for the product of the linear forms

~cT ~ϕ1 (Rmn
)~bT ~ϕ1 (Rmn

) , where ~ϕ1 (Rmn
) is the eigenvector of matrix Rmn

correspond-
ing to its maximal eigenvalue, is equal to

G
(max)
27

[
n, ε, δ, A,B,Rmn ,~b,~c

]
=

1
2πi

∮

|u+iv−Gmax
26 |=δ

G25 (A,B, u + iv)d (u + iv) ,

where δ > 0 is a certain small number,

G25 (A,B, u + iv)

= i
∫ B

0

{
e|sp|

π

∫ A

0

~cT Im

{
θ̂ (z)

z

[
R̂mn − Imn

(
θ̂ (z) + iε

)]−1
}

~be−itpdt

}

× e−p(v−iu)χ (v > 0) dp,

+ i
∫ B

0

{
e|sp|

π

∫ 0

−A

~cT Im

{
θ̂ (z)

z

[
R̂mn − Imn

(
θ̂ (z) + iε

)]−1
}

~be−itpdt

}

× e−p(v−iu)χ (v < 0) dp.

z = t + is and s > c > 0, where c > 0 is a certain constant.
Similarly we defined the consistent estimator for linear form

~cT ~ϕmn (Rmn)~bT ~ϕmn (Rmn) , where ~ϕmn (Rmn) is the eigenvector of matrix Rmn corre-
sponding to its minimal eigenvalue:

G
(min)
27

[
n, ε, δ, A, B, Rmn ,~b,~c

]
=

1
2πi

∮

|u+iv−Gmin
26 |=δ

G25 (A,B, u + iv)d (u + iv) .

Theorem 27.1. Suppose that conditions (26.1)–(26.7) are fulfilled and

~cT~c +~bT~b ≤ c < ∞.

Then
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lim
A→∞

lim
B→∞

p lim
n→∞

[
Gmax

27

[
n, ε, δ, A, B,Rmn

,~b,~c
]
− ~cT ~ϕ1 (Rmn

)~bT ~ϕ1 (Rmn
)
]

= 0.

28. G28 CONSISTENT ESTIMATOR OF THE TRACE OF THE RESOLVENT OF

THE GRAM MATRIX

The G28-estimator of Stieltjes’ transform ϕ
(
z, AAT

)
= m−1

n Tr
[
AAT − zImn

]−1 is by
definition the following expression:

G28

(
z, ΞΞT

)
= ϕ

(
θ̂ (z) , ΞΞT

) [
1 + γϕ

(
θ̂ (z) , ΞΞT

)]−1

.

Here Ξ is an observation of the matrix A + H, H is a certain random matrix, θ̂ (z) is
the measurable solution of the G28-equation

− θ̂ (z)
{

1 +
1
n

Tr
[
ΞΞT − θ̂ (z) Imn

]−1
}2

+
(
1− mn

n

) {
1 +

1
n

Tr
[
ΞΞT − θ̂ (z) Imn

]−1
}

= −z.

(28.1)

Additionally we will use the non-negative solution θ (z) of the equation

− θ (z)
{

1 +
1
n
ETr

[
ΞΞT − θ (z) Imn

]−1
}2

+
(
1− mn

n

) {
1 +

1
n
ETr

[
ΞΞT − θ (z) Imn

]−1
}

= −z.

(28.2)

Theorem 28.1. If for every n, the entries ξ
(n)
ij , i = 1, . . . ,mn; j = 1, . . . , n of random

matrix Ξ are independent, E ξ
(n)
ij = a

(n)
ij , Var ξ

(n)
ij = n−1; for a certain δ > 0

E
∣∣(ξ(n)

ij − a
(n)
ij )

√
n
∣∣2+δ ≤ c1 < ∞, max

i=1,...,m

n∑

j=1

a2
ij ≤ c2 < ∞,

0 < lim inf
n→∞

mn

n
< lim sup

n→∞
mn

n
< 1,

then with probability one for every S > 0 and T > 0

lim
n→∞

sup
0<c≤Im z≤S,
|Re z|≤T

∣∣∣G28 (z)−m−1
n Tr

{
AAT − zImn

}−1
∣∣∣ = 0,

where c > 0 is a certain constant.

Thus, under some conditions

lim
n→∞

sup
0<c≤Im z≤S,
|Re z|≤T

∣∣∣G28 (z)−m−1
n Tr

{
AAT − zImn

}−1
∣∣∣ = 0.
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We need to know the trace of the resolvent of the covariance matrix for all s > 0.
Since the function m−1

n Tr {Rmn
− zImn

}−1 is analytic in z, Im z > 0 we can use many
methods for its analytical continuation. For example, we can use the Fourier transform
and consider the following modified G28 estimator:

G28 (A, B, u + iv) = i
∫ B

0

{
e|sp|

π

∫ A

−A

Im G28 (z) e−itpdt

}
e−p(v−iu)dp, v > 0.

It is easy to prove that the following assertion is valid: if the conditions of Theorem
28.1 are valid, then with probability one for every ε > 0, s > c > 0

lim
B→∞

lim
A→∞

lim
n→∞

sup
0<ε≤u

∣∣∣G28 (A, B, u + iv)−m−1
n Tr

{
AAT − (u + iv) Imn

}−1
∣∣∣ = 0.

29. G29-CONSISTENT ESTIMATOR OF SINGULAR VALUES OF THE MATRIX

Let µ1 ≥ µ2 · · · ≥ µmn be the eigenvalues and let hi, i = 1, ..., mn; h1i > 0 be the
corresponding eigenvectors of the matrix AAT , A = (aij)m

i,j=1.

The Gmax
29 -consistent estimator of maximal eigenvalues µ1

(
AAT

)
of matrix AAT is

equal to a maximal measurable solution x of the equation

µ1

(
ΞΞT

)
= x

{
1− Re

[
i
∫ B

0

{
e|sp|

π

∫ A

−A

Im G28

(
z, ΞXiT

)
e−itpdt

}
e−p(x−iε)dp

]}2

,

where Ξ is the observation of matrix A+H, H is a random matrix, z = t+is, s > c > 0,
c > 0 is a certain constant,

G28

(
z, ΞΞT

)
=

1
m

Tr
[
ΞΞT − θ̂ (z) Im

]−1
[
1 +

1
m

Tr
[
ΞΞT − θ̂ (z) Im

]−1
]−1

,

θ̂ (z) is the measurable solution of the G28 equation

θ̂ (z)
{

1 +
1
m

Tr
[
ΞΞT − θ̂ (z) Imn

]−1
}2

= z.

Similarly we defined the Gmin
29 -consistent estimator for minimal eigenvalues

µm

(
AAT

)
of matrix AAT which is equal to a minimal measurable solution x of the

equation

µm

(
ΞΞT

)
= x

{
1− Re

[
i
∫ B

0

{
e|sp|

π

∫ A

−A

Im G28 (z) e−itpdt

}
e−p(x−iε)dp

]}2

.

Theorem 29.1. [Gir55] Suppose that in addition to the conditions of Theorem 28.1,

m = n, E
∣∣(ξ(n)

ij − a
(n)
ij )

√
n
∣∣4+δ

< c < ∞, δ > 0
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and

µk

(
AAT

)
< d < ∞; µ1

(
AAT

)
> µk

(
AAT

)
+ τ ; τ > 0, k = 2, ..., m.

lim sup
n→∞

{
1− 1

m

m∑

k=2

µk

(
AAT

)
+ µ1

(
AAT

)

[µk (AAT )− µ1 (AAT )]2

}
< 1,

and with probability one

lim inf
ε↓0

lim inf
n→∞

∣∣∣∣∣∣

{
1− 1

m
Re

m∑

k=2

1
µk (AAT )− µ1 (AAT )− iε

}2

+

{
2− 1

m
Re

m∑

k=2

[
1

µk (AAT )− µ1 (AAT )− iε
+

1
µk (AAT )−Gmax

29 − iε

]}

× 1
m

Gmax
29 Re

m∑

k=2

1
[µk (AAT )−Gmax

29 − iε] [µk (AAT )− µ1 (AAT )− iε]

∣∣∣∣∣ > 0.

Then

lim
ε↓0

lim
B→∞

lim
C→∞

p lim
n→∞

[
Gmax

29 (B, C, ε)− µ1

(
AAT

)]
= 0.

30. G30-CONSISTENT ESTIMATOR OF EIGENVECTORS CORRESPONDING TO

EXTREME SINGULAR VALUES OF THE MATRIX

Let λ1

(
AAT

) ≥ · · · ≥ λm

(
AAT

)
be eigenvalues and ~ϕ1

(
AAT

)
, · · · , ~ϕm

(
AAT

)
be cor-

responding orthonormal eigenvectors of the matrix AAT , A =
(
a
(n)
ij

)
i,j=1,....mn

and the

first nonzero component of every eigenvector is positive. Consider G-spectral function

νn

(
x,AAT ,~b,~c

)
=

mn∑

k=1

[
~cT ~ϕk

(
AAT

)] [
~bT ~ϕk

(
AAT

)]
χ

[
λk

(
AAT

)
< x

]
,

where ~b and ~c are arbitrary mn-dimensional vectors.
Suppose we have one observation Ξ =

(
ξ
(n)
ij

)
i,j=1,....mn

of matrix A + H, where H is

a random matrix.
The G30

{
Ξ,~b,~c

}
-consistent estimator for the product of the linear forms

~cT ~ϕ1

(
AAT

)
~bT ~ϕ1

(
AAT

)
, where ~ϕ1

(
AAT

)
is the eigenvector of matrix AAT corre-

sponding to its maximal eigenvalue is equal to

G
(max)
30

[
n, ε, δ,Ξ,~b,~c

]
=

1
2πi

∮

|u+iv−Gmax
29 |=δ

G (C,B, u + iv)d (u + iv) ,

where δ > 0 is a certain small number,
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G (C, B, u + iv) = i
∫ B

0





e|sp|

π

∫ C

0

~cT Im
1

1 + n−1Tr
{

ΞΞT − I
[
θ̂ (z) + iε

]}−1

×
{

ΞΞT − I
[
θ̂ (z) + iε

]}−1
~be−itpdt

}
e−p(v−iu)χ (v > 0) dp

+ i
∫ B

0





e|sp|

π

∫ 0

−A

~cT Im





1

1 + n−1Tr
[
Ξ− I

(
θ̂ (z) + iε

)]−1

×
[
Ξ− I

(
θ̂ (z) + iε

)]−1
}

~be−itpdt

}
e−p(v−iu)χ (v < 0) dp,

Similarly, we defined the consistent estimator for the linear form
~cT ~ϕmn

(
AAT

)
~bT ~ϕmn

(
AAT

)
, where ~ϕmn

(
AAT

)
is the eigenvector of matrix AAT cor-

responding to its minimal eigenvalue:

G
(min)
30

[
n, ε, δ, C, B, Ξ,~b,~c

]
=

1
2πi

∮

|u+iv−Gmin
29 |=δ

G (C, B, u + iv) d (u + iv) .

Theorem 30.1. [Gir55] Suppose that the conditions of Theorem 29.1 are fulfilled and

~cT~c +~bT~b ≤ c < ∞.

Then

lim
C→∞

lim
B→∞

lim
n→∞

{
Gmax

30

[
n, ε, δ, C, B, Ξ,~b,~c

]
− ~cT ~ϕ1

(
AAT

)
~bT ~ϕ1

(
AAT

)}
= 0.

31. G31-ESTIMATOR OF THE RESOLVENT OF A SYMMETRIC MATRIX

In this section we explain the main ideas of estimation of eigenvalues and eigenvectors of
matrices. The G31-estimator of Stieltjes’ transform ϕ (z,A) = n−1Tr [A− zIn]−1 where
A is a symmetric matrix, z = t + is, s > 0 is by definition the following expression:

G31 (z, Ξ) = ϕ
(
θ̂ (z) , Ξ

)
= n−1Tr

[
Ξ− θ̂ (z) In

]−1

,

where Ξ is an observation of matrix A+H, H is a random matrix, θ̂ (z) is the measurable
solution of the G31 equation

θ̂ (z) + n−1Tr
[
Ξ− θ̂ (z) In

]−1

= z, z = t + is, s > 0. (31.1)
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31.1. Canonical equation

Theorem 31.1. [Gir55] If for every n, the random entries ξ
(n)
ij , i ≥ j; i, j = 1, . . . , n of

a symmetric matrix Ξ =
(
ξ
(n)
ij

)j=1,...,n

i=1,...,n
are independent, E ξ

(n)
ij = a

(n)
ij ; Var ξ

(n)
ij = n−1,

sup
n

max
k=1,...,m

n∑

j=1

a2
kj < ∞,

the modified Lindeberg’s condition is fulfilled: for a certain τ > 0

lim
n→∞

n−1
n∑

i,j=1

E
∣∣∣ξ(n)

ij

∣∣∣
2

χ
(∣∣∣ξ(n)

ij

∣∣∣ > τ
)

= 0

or

sup
n

max
i,j=1,...,n

E
∣∣∣
(
ξ
(n)
ij −E ξ

(n)
ij

)√
n
∣∣∣
2+δ

< ∞ (31.2)

and |αi (A) | < c < ∞; A =
(
a
(n)
ij

)j=1,...,n

i=1,...,n
, where α1 (A) ≤ · · · ≤ αn (A) are the

eigenvalues of the matrix A, then with probability 1

lim
n→∞

sup
x
|µn(x)− Fn(x)| = 0, (31.3)

where µn (x) = n−1
∑n

k=1 χ (λk (Ξ) < x) and Fn(x) is the distribution function:

Fn(x) =
∫ x

−∞
pn(y)dy. (31.4)

Here, the density p(x) is the first component of the real vector-solution {p (x) , g (x)}
of the system of canonical equations [Gir84]

1 = n−1
n∑

k=1

[(α(n)
k − x− g(x))2 + π2p2(x)]−1,

g(x) = n−1
n∑

k=1

(α(n)
k − x− g(x))[(α(n)

k − x− g(x))2 + π2p2(x)]−1.

(31.5)

There exists a unique solution of a system of equations (31.5) in the class of functions

B =
{

p(x), g(x) : p(x) ∈ G, p(x) > 0; x > 0;
∫

G

p(x)dx = 1
}

for every x for which p(x) > 0. Stieltjes’ transform

b (z) =
∫

(x− z)−1
p (x) dx, z = t + is, s > 0

of function p(x) satisfies the equation (see [Pas1])
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b(z) = n−1
n∑

k=1

[αk − z − b (z)]−1
, (31.6)

which has the unique solution b(z) in the class of analytic functions:
B1 = {b (z) : Im [b(z)] > 0, Im z > 0} and can be obtained by the method of successive
approximations.

Corollary 31.1. [Pas1] If in addition to the conditions of Theorem 31.1 α
(n)
k = 0, k =

1, ..., n, then the component p(x) of the solution of the system of equations (31.5) is
equal to

p(x) = (2π)−1(4− x2)1/2, |x| ≤ 2

and this is called the semicircle Wigner Law.

31.2. Equations for boundary points of spectral density

Denote

γ1 = inf
x
{x : p (x) > 0} , γ2 = sup

x
{x : p (x) > 0} .

Lemma 31.1. [Gir84] Assume that the condition

|αk| ≤ c < ∞, k = 1, . . . , n

holds. Then

−∞ < c1 < γ1 < γ2 < c2 < ∞,

where

γi = νi − n−1
n∑

k=1

(
α

(n)
k − νi

)−1

, i = 1, 2,

v1 = min yi, v2 = max yi

and yi are the real solutions of L1 equation

n−1
n∑

k=1

(
α

(n)
k − y

)−2

= 1.

31.3. Inequality for imaginary parts of resolvent of symmetric random
matrix

Theorem 31.2. If the conditions of Theorem 31.1 are fulfilled, then for all T > 0, s >
c, ε > 0

lim sup
n→∞

sup
|t|≤T, 0<ε<s≤S

∣∣∣n−1ImE Tr (Ξn − Inz)−1
∣∣∣ ≤ c1.

Proof. Using the equation
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b(z) = n−1
n∑

k=1

[αk − z − b (z)]−1

and Theorem 31.1 we arrive to the assertion of Theorem 31.2

31.4. Existence and boundedness of the solutions of the main equation

The G31-estimator of Stieltjes’ transform ϕ (z, A) = n−1Tr [A− zIn]−1 is by definition

the following expression: G31 (z, Ξ) = ϕ
(
θ̂ (z) , Ξ

)
= n−1Tr

[
Ξ− θ̂ (z) In

]−1

, where

θ̂ (z) is the measurable solution of a main G31-equation

θ̂ (z) + n−1Tr
[
Ξ− θ̂ (z) In

]−1

= z. (31.7)

Additionally, we will use the non-negative solution θ (z) of the equation

θ (z) + n−1E Tr [Ξ− θ (z) In]−1 = z. (31.8)

Theorem 31.3. Let s > 1. Then for large n with probability one, there exists the
solution θ̂ (z) of the equation (31.7) and the solution θ (z) of the equation (31.8).

Proof. Denote θ̂ (z) = θ̂1 (z) + iθ̂2 (z) . Then equation (31.7) has the form

θ̂1 (z) + n−1ReTr
[
Ξ− θ̂ (z) In

]−1

= t,

θ̂2 (z) + n−1ImTr
[
Ξ− θ̂ (z) In

]−1

= s.

Let θ̂2 (z) > c > 0 be a fixed number, where c > 0 is a certain number. Then there
always exists the solution of (31.7). For the second equation we have

θ̂2 (z) = s− n−1Im Tr
[
Ξ− θ̂ (z) In

]−1

. (31.9)

But from Theorem 31.2 it follows that for large n, there exists such ε > 0 that

P

{
0 ≤ sup

0<c1≤θ̂2(z)

Im
1
n

Tr
{

Ξ− θ̂ (z) In

}−1

≤ 1 + ε

}
= 1.

Therefore, choosing Im z > 1, we prove that for large n, there exists the solution
θ̂2 (z) > δ > 0 of equation (31.9) with probability one. Therefore, for large n, there
exist solutions θ̂ (z) , θ̂2 (z) > δ > 0 of equation (31.7) with probability one.

Analogously we prove that for large n there exists a solution of (31.8).

31.5. Ordered solutions of the main equations

In the general case for large n with probability one there are many solutions of equations
(31.7) and (31.8). We denote them θ̂1 (z) , θ̂2 (z) , ... and θ1 (z) , θ2 (z) , ... respectively,
where

∣∣∣θ̂1 (z)
∣∣∣ ≥

∣∣∣θ̂2 (z)
∣∣∣ ≥

∣∣∣θ̂3 (z)
∣∣∣ ≥ · · · ; |θ1 (z)| ≥ |θ2 (z)| ≥ |θ3 (z)| ≥ · · · .
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Theorem 31.4. If the conditions of Theorem 31.1 are fulfilled, then there exists constant
c > 0 such that for every s > c and t

P
{

lim
n→∞

∣∣∣θ̂1 (z)− θ1 (z)
∣∣∣ = 0

}
= 1.

Proof. From Theorem 31.3 we obtain

P

{
lim

n→∞
sup

|t|≤T ; 0<c1≤s<S

∣∣∣∣
1
n

Tr {Ξ− zIn}−1 − 1
n
ETr {Ξ− zIn}−1

∣∣∣∣ = 0

}
= 1.

Therefore, we can change the equation

θ̂ (z) + n−1Tr
[
Ξ− θ̂ (z) In

]−1

= z

to

θ (z) + n−1ETr [Ξ− θ (z) In]−1 = z + εn,

where εn → 0 with probability one. Then, denoting

fn (θ (z)) = n−1E Tr [Ξ− θ (z) In]−1 − z,

we obtain that θ1 (z) + fn (θ1 (z)) = θ̂1 (z) + fn

(
θ̂1 (z)

)
+ εn and the function fn (z) ,

Im z > c > 0 and its every convergent limit are analytic functions on the domain
{z : Im z > c > 0} .

Therefore,

P
{

lim
n→∞

∣∣∣θ̂1 (z)− θ1 (z)
∣∣∣ = 0

}
= 1

and Theorem 31.4 is proved.

31.6. Consistency of estimator G31

Theorem 31.5. If the conditions of Theorem 31.1 are fulfilled, then with probability
one, for every S > 0 and T > 0

lim
n→∞

sup
1<Im z≤S, |Re z|≤T

∣∣∣G31 (z)− n−1Tr {A− zIn}−1
∣∣∣ = 0.

Proof. Using Theorem 31.4 we have

P
{

lim
n→∞

∣∣∣θ̂1 (z)− θ1 (z)
∣∣∣ = 0

}
= 1,

where θ̂1 (z) and θ1 (z) are solutions of the equations θ̂ (z)+n−1ImTr
[
Ξ− θ̂ (z) In

]−1

=

z and θ (z) + n−1ETr [Ξ− θ (z) In]−1 = z respectively. Hence, using Theorem 31.1 we
obtain with probability one
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G31 (z, Ξ) = n−1ImTr
[
Ξ− θ̂ (z) In

]−1

= n−1ImTr [Ξ− θ (z) In]−1 + εn

=
1
n

n∑

k=1

{
αk − θ (z)− n−1ETr [Ξ− θ (z) In]−1

}−1

+ εn

=
1
n

Tr [A− zIn]−1 + ε̃n,

where P
{

lim
n→∞

[|ε̃n|+ |εn|] = 0
}

= 1. Theorem 31.5 is proved.

31.7. Analytical continuation of estimator G31

Thus, under some conditions

lim
n→∞

sup
1<Im z≤S, |Re z|≤T

∣∣∣G31 (z)− n−1Tr {A− zIn}−1
∣∣∣ = 0.

One needs to know the trace of the resolvent of the covariance matrix for all s > 0.
Since the function n−1Tr {An − zIn}−1 is analytical in z : Im z > 0, we can use
methods of its analytical continuation. For example, we can use the Fourier transform
and consider the following modified G31 estimator:

G31 (C, B, u + iv) = i
∫ B

0

{
e|sp|

π

∫ C

−C

Im G31 (z) e−itpdt

}
e−p(v−iu)dp, v > 0.

It is easy to prove that the following assertion is valid: if the conditions of Theorem
31.1 are valid then with probability one for every ε > 0, s > c > 0

lim
B→∞

lim
C→∞

lim
n→∞

sup
ν, 0<ε≤u

∣∣∣G31 (C, B, u + iv)− n−1Tr {A− (u + iv) In}−1
∣∣∣ = 0.

32. G32-ESTIMATOR OF EIGENVALUES OF A SYMMETRIC MATRIX

Let λ1 ≤ · · · ≤ λn be eigenvalues of the symmetric random matrix Ξ =
(
ξ
(n)
ij

)n

i,j=1
.

Theorem 32.1 [Gir55] Assume that the entries ξ
(n)
ij , i ≥ j, i, j = 1, . . . , n are indepen-

dent for every n

E ξ
(n)
ij = a

(n)
ij , E

[
ξ
(n)
ij − a

(n)
ij

]2

= n−1,

for a certain β > 0

sup
n

sup
i,j=1,...,n

E
∣∣∣
(
ξ
(n)
ij − a

(n)
ij

)
n1/2

∣∣∣
8+β

< ∞,

∣∣∣α(n)
k

∣∣∣ ≤ c < ∞, k = 1, . . . , n,
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where α
(n)
1 ≤ · · · ≤ α

(n)
n are eigenvalues of the matrix A =

(
a
(n)
ij

)n

i,j=1
,

max
k=1,...,n

n∑

j=1

a2
kj ≤ c < ∞.

Then with probability 1
1).

lim
n→∞

[λ1 − γ1] = 0, lim
n→∞

[λn − γ2] = 0,

where

γi = vi − 1
n

n∑

k=1

(
α

(n)
k − vi

)−1

; i = 1, 2, (32.1)

v1 = min yi, v2 = max yi and yi are the real solutions of the L1 equation

1
n

n∑

k=1

(
α

(n)
k − yi

)−2

= 1.

2). For all k such that 0 < c1 ≤ k
n ≤ c2 < 1 with probability 1

lim
ε↓0

lim
n→∞

∣∣∣∣λk − inf
{

x :
k

n
− ε ≤ F (x)

}∣∣∣∣
∣∣∣∣λk − sup

{
x : F (x) ≤ k

n
+ ε

}∣∣∣∣ = 0. (32.2)

(see formula (31.4) for function F (x) )
3). If the limits

lim
n→∞

kn−1 = y, lim
n→∞

Fn (x) = F (x)

exist for a certain k and if F (x) is an increasing function in some neighborhood of the
point y, then with probability one lim

n→∞
[
λk − F (−1)(y)

]
= 0, where F (−1)(y) is the

inverse function.
The Gmax

32 -consistent estimator for maximal eigenvalues λ1 (A) of matrix A is equal
to a maximal measurable solution x of the equation

λ1 (Ξ) = x− Re

[
i
∫ B

0

{
e|sp|

π

∫ C

−C

Im G32 (z) e−itpdt

}
e−p(x−iε)dp

]
.

Here, Ξ is the observation of matrix A + H, H is a random matrix,

G32 (z) = n−1Tr
[
Ξ− θ̂ (z) In

]−1

,

θ̂ (z) is the measurable solution of the G32 equation

θ̂ (z) + n−1Tr
[
Ξ− θ̂ (z) In

]−1

= z.

Similarly, we defined the Gmin
32 -consistent estimator for the minimal eigenvalue λn (A)

of a matrix A, which is equal to a minimal measurable solution x of the equation
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λn (Ξ) = x− Re

[
i
∫ B

0

{
e|sp|

π

∫ C

−C

ImG32 (z) e−itpdt

}
e−p(x−iε)dp

]
.

Theorem 32.2. [Gir55] Suppose that the conditions of Theorem 32.1 are fulfilled and

|λk (A) | < d < ∞; λ1 (A) > λk (A) + τ ; τ > 0, k = 2, . . . , n,

lim inf
n→∞

{
1− 1

n

n∑

k=2

1
[λk (A)− λ1 (A)]2

}
> 0,

and with probability one

lim inf
ε↓0

lim inf
n→∞

∣∣∣∣∣1−
1
n

Re
n∑

k=2

1
[λk (A)− λ1 (A) + iε] [λk (A)−G32 (z) + iε]

∣∣∣∣∣ > 0.

Then

lim
ε↓0

lim
B→∞

lim
C→∞

lim
n→∞

[Gmax
32 (n,C, B, ε)− λ1 (A)] = 0.

33. G33-ESTIMATOR OF THE EIGENVECTOR WHICH CORRESPONDS TO EX-

TREME EIGENVALUES OF THE SYMMETRIC MATRIX

Let λ1 (A) ≥ · · · ≥ λn (A) be the eigenvalues and ~ϕ1 (A) , · · · , ~ϕn (A) be the correspond-

ing orthonormal eigenvectors of the symmetric matrix A =
(
a
(n)
ij

)n

i,j=1
and suppose that

the first nonzero component of every eigenvector is positive. Consider the G-spectral
function

νn

(
x,A,~b,~c

)
=

n∑

k=1

[
~cT ~ϕk (A)

] [
~bT ~ϕk (A)

]
χ [λk (A) < x],

where ~b and ~c are arbitrary n-dimensional vectors.
Suppose we have one observation Ξ =

(
ξ
(n)
ij

)n

i,j=1
of matrix A =

(
a
(n)
ij

)n

i,j=1
+

(
η
(n)
ij

)n

i,j=1
.

The G33

{
Ξ,~b,~c

}
-consistent estimator for the product of the linear forms

~cT ~ϕ1 (A)~bT ~ϕ1 (A) , where ~ϕ1 (A) is the eigenvector of matrix A corresponding to its
maximal eigenvalue, is equal to

G
(max)
33

[
n, ε, δ,Ξ,~b,~c

]
=

1
2πi

∮

|u+iv−Gmax
32 |=δ

G (C,B, u + iv)d (u + iv) ,

where δ > 0 is a certain small number,
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G (C, B, u + iv)

= i
∫ B

0

{
e|sp|

π

∫ C

0

~cT Im
{

Ξ− I
[
θ̂ (z) + iε

]}−1
~be−itpdt

}
e−p(v−iu)χ (v > 0) dp

+ i
∫ B

0

{
e|sp|

π

∫ 0

−C

~cT Im
{

Ξ− I
[
θ̂ (z) + iε

]}−1
~be−itpdt

}
e−p(v−iu)χ (v < 0) dp,

Gmax
32 is a maximal measurable solution x of the equation

λ1 (Ξ) = x− Re

[
i
∫ B

0

{
e|sp|

π

∫ C

−C

Im G31 (z) e−itpdt

}
e−p(x−iε)dp

]
,

G31 (z) = n−1Tr
[
Ξ− θ̂ (z) In

]−1

,

and θ̂ (z) is the measurable solution of the G31-equation

θ̂ (z) + n−1Tr
[
Ξ− θ̂ (z) In

]−1

= z.

Similarly, we defined the consistent estimator for linear form ~cT ~ϕn (A)~bT ~ϕn (A) ,
where ~ϕn (A) is the eigenvector of matrix A corresponding to its minimal eigenvalue:

G
(min)
33

[
n, ε, δ, C, B, Ξ,~b,~c

]
=

1
2πi

∮

|u+iv−Gmin
32 |=δ

G (C, B, u + iv) d (u + iv) .

Here Gmin
32 is the consistent estimator for minimal eigenvalues λn (A) of matrix A which

is equal to a minimal measurable solution x of the equation

λn (Ξ) = x− Re

[
i
∫ B

0

{
e|sp|

π

∫ C

−C

ImG31 (z) e−itpdt

}
e−p(x−iε)dp

]
.

Theorem 33.1. Suppose that the conditions of Theorem 32.1 are fulfilled and

~cT~c +~bT~b ≤ c < ∞,

|λk (A) | < d < ∞; λ1 (A) > λk (A) + τ ; τ > 0, k = 2, ..., n, λ2(A) < α2,

λ2 (A) < α2,

lim inf
n→∞

{
1− 1

n

n∑

k=2

1
[λk (A)− λ1 (A)]2

}
> 0,

and with probability one
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lim inf
ε↓0

lim inf
n→∞

∣∣∣∣∣1−
1
n

Re
n∑

k=2

1
[λk (A)− λ1 (A) + iε] [λk (A)−Gmax

32 (z) + iε]

∣∣∣∣∣ > 0.

Then

lim
C→∞

lim
B→∞

lim
n→∞

[
Gmax

33

[
n, ε, δ, C, B, Ξ,~b,~c

]
− ~cT ~ϕ1 (A)~bT ~ϕ1 (A)

]
= 0.

The proof of this Theorem is based on the use of the asymptotic expression for the
traces of the resolvents of the matrix Ξ.

34. G34-ESTIMATOR OF THE V -TRANSFORM

Here we consider the most difficult problem of estimation of eigenvalues and eigenvectors
of matrices, i.e. the case when the matrices are nonsymmetric.

In this section we assume that the expectation of the entries of the random matrices
may not equal zero. Let us consider matrices An + Ξn, where An = (aij)n

i,j=1 is a
nonrandom complex matrix and Ξn is a random matrix.

Theorem 34.1. [Gir73, Gir84] (V -Law). Let Ξ = (ξn
ij)i,j=1,...,n be random complex

matrices whose entries ξ
(n)
ij i ≥ j are independent for every n, E ξ

(n)
ij = 0; E |ξ(n)

ij |2 =

n−1, E ξ
(n)
ij ξ

(n)
ji = ρn−1, i 6= j and for some δ > 0

E |ξ(n)
ij

√
n|4+δ ≤ c < ∞,

and suppose that there exist densities p
(n)
ij (x, y, u, v) of the random entries

√
nRe ξ

(n)
ij ,√

nImξ
(n)
ij ,√

nReξ(n)
ji ,

√
nImξ

(n)
ji , i > j satisfying the condition: for some β > 1

sup
n

max
k,l=1,...,n

k 6=l

∫∫ [∫ [∫
p
(n)
kl (x, y, u, v)dy

]β

dx

]1/β

dudv < ∞,

or

sup
n

max
k,l=1,...,n

k 6=l

∫∫ [∫ [∫
p
(n)
kl (x, y, u, v)dx

]β

dy

]1/β

dudv < ∞,

and that there exist the densities p
(n)
ii (x) of the random entries

√
n<ξ

(n)
ii , or the densities

q
(n)
ii (x) of the random entries

√
n=ξ

(n)
ii , satisfying the condition: for some β1 > 1

sup
n

max
k=1,...,n

∫ [
p
(n)
kk (x)

]β1

dx < ∞, or sup
n

max
k=1,...,n

∫ [
q
(n)
kk (x)

]β1

dx < ∞,

sup
n

max
i,j=1,...,n

n∑

i=1

[|aij |+ |aji|
]

< ∞,
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then
p lim
n→∞

|µn(x, y)− Fn(x, y)| = 0.

Here

µn(x, y) = n−1
n∑

k=1

χ(Re λk < x, Im λk(y)),

are eigenvalues of matrix An + Ξn, the V-density pn(x, y) = ∂2

∂x∂y Fn(x, y) is equal to

pn(t, s) =

{
1
4π limα↓0

∫∞
α

[
∂2

∂t2 + ∂2

∂s2

]
m(y, τ) dy; if t, s 6∈ M

0, if t, s ∈ M
,

M =
{

t, s :
1
n

Tr
[
(A− In(τ − ρθ(0, τ)))(A− In(τ − ρθ(0, τ)))∗

]−1
< 1

}
,

and m(y, τ) satisfies the canonical equation

m(y, τ) =
1
n

Tr
[
yIn(1 + m(y, τ))

+
(A− In(τ − ρθ(y, τ)))(A− In(τ − ρθ(y, τ)))∗

1 + m(y, τ)

]−1

,

θ(y, τ) =
1
2

∫ ∞

y

(
− ∂

∂t
+ i

∂

∂s

)
m(u, τ) du.

(34.1)

This canonical equation has a unique solution in the class of analytic real functions
m(y, τ), y > 0 in y.

The V -transform of matrix A is equal to

b(α, τ) =
1
n

Tr
[
Iα + (A− Iτ)(A− Iτ)∗

]−1
, τ = t + is.

Using (34.1) we introduce the G34-estimator of b(α, τ):

G34 =
m(β̂, ẑ)

1 + m(β̂, ẑ)
,

where
m(β, z) =

1
n

Tr
[
Iβ + (X − Iz)(X − Iz)∗

]−1
,

X is an observation of the matrix A + Ξ, β̂ and ẑ are solutions of equations

z − ρθ(β, z) = τ, β(1 + m(β, z))2 = α.

35. G35-ESTIMATORS OF EIGENVALUES OF RANDOM MATRICES

WITH INDEPENDENT PAIRS OF ENTRIES

We call any estimator for eigenvalues of matrix A obtained on the basis of the equation
for the boundary of the G-domain of V -density a G35-estimator. Analysing the G-
domain of V -density we see a completely different picture of behavior of eigenvalues of
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random matrices as compared to the results obtained for eigenvalues by the perturbation
formulas. For instance, let matrix A in the V -density be symmetric and its eigenvalues
α1 ≥ α2 ≥ · · · ≥ αn satisfy inequalities

α1 > α2 + c, c > 0

and

n−1
n∑

k=2

(α1 − αk)−2
< 1.

Let λ (A + Ξ) be the eigenvalue of the matrix A+Ξ with the maximal absolute value;
then the G35-estimator for eigenvalue α1 of matrix A is equal to λ (A + Ξ) . If matrix
A + Ξ satisfies the conditions of Theorem 34.1, then

p lim
n→∞

[Reλ (A + Ξ)− α1] = 0.

In this case the norm of random matrix Ξ does not tend to zero. Nevertheless, the
random errors in the expression Re λ (A + Ξ) vanish when the dimension of matrix Ξ
tends to infinity.

36. G36-ESTIMATOR OF EIGENVECTORS OF MATRICES WITH INDEPENDENT

PAIRS OF ENTRIES

We call any estimator for eigenvectors of matrix A obtained with the help the equations
for the boundary of the G-domain and for V -density a G36 -estimator. Again, analysing
the G-domain of V -density we can see another picture of behavior of eigenvectors of
random matrices with a comparison of results obtained by the perturbation formulas.
Let us assume as above the matrix A in the V -density is symmetric and its eigenvalues
α1 ≥ α2 ≥ · · · ≥ αn satisfy inequalities

α1 > α2 + c, c > 0

and

n−1
n∑

k=2

(α1 − αk)−2
< 1.

Let ~ϕ (A + Ξ) be the eigenvector corresponding to the eigenvalue λ (A + Ξ) of matrix
A + Ξ with the maximal absolute value. Then the G36-estimator of eigenvalue ~ϕ (A)
corresponding to the eigenvalue α1 of matrix A is equal to ~ϕ (A + Ξ) . If matrix A + Ξ
satisfies the conditions of Theorem 34.1, then

p lim
n→∞

[Re ~ϕ (A + Ξ)− ~ϕ (A)] = 0

The norm of random matrix Ξ does not tend to zero, but the random errors in
Re λ (A + Ξ) vanish when the dimension of matrix Ξ tends to infinity. The proof of this
result is based on the following formula

G36 =
∮

|z+u−λ(A+Ξ)|=δ

~bT [A− uIn + Ξ− zIn]−1
~cdz = ~bT [A− uI]−1

~c + εn,
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where δ > 0 is a certain number.

37. G37-ESTIMATOR OF THE U -STATISTIC

One of the most important problems of the theory of probability and mathematical
statistics is the investigation of asymptotic behavior of U -statistics. It confirms the fact
that such U -statistics can be used for estimation of functionals of the integral type.
There are several directions of investigation of U -statistics. The best known is the
so-called Hoeffding’s representation. The idea here is to represent U -statistics based
on independent observations as the sum of independent random variables and some
remainder. The main problem in Hoeffding’s method is in the proof that this remainder
after certain normalization converges to zero in probability. There are many books
and articles dedicated to Hoeffding’s method. The second direction is the martingale
representation of U -statistics[Gir55]. This representation is more useful and allows us to
prove limit theorems for U -statistics in the general case when observations are dependent
and may have unbounded moments. Note that these two methods were developed for U -
statistics. The third direction is based on the main ideas of general statistical analysis.
Namely, we consider the problem of estimating the functionals of integral type under
G-condition. In this case, standard U -statistics may have undesirable properties. They
are unbiased, but variances of such statistics are very large. Therefore, we will try
to find new G-estimators of U -statistics. Consider the functional of the distribution
function F (x)

J =
∫
· · ·

∫
f (~u)

mn∏

k=1

dF (uk), ~u = {u1, · · · , umn}T ∈ Rmn ,

and suppose that a sequence of independent observations x1, · · · , xn of a random variable
with the distribution function F (x) is given. We use the well-known U -statistics of
functional J :

Un =
m! (n−m)!

n!

∑

{i1<···<imn}
f

(
xi1 , · · · , ximn

)
,

where {i1 < · · · < imn} is the sample of numbers from numbers 1, · · · , n and this sum
is taken over all such samples. U -statistics is unbiased and for fixed m is consis-
tent. But under the G-condition, such statistics in general is not consistent. Let
f

(
xi1 , · · · , ximn

) ≥ c > 0. Denote

Vn =
∑

{i1<···<imn}
f

(
xi1 , · · · , ximn

)
,

Vn

EVn
=

n∏

k=1

E k−1Vn

E kVn
=

n∏

k=1

{
1 +

E k−1Vn −E kVn

E kVn

}
=

n∏

k=1

{1 + δk},

where

δk =
E k−1Vn −E kVn

E kVn
,

E k is the conditional expectation with respect to the fixed random variables
xk+1, · · · , xn.
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It is evident that the random variables δk, k = 1, . . . , n form martingale differences.
Then, using the central limit theorem for the sum of martingale differences, we get

Theorem 37.1. [Gir55, p. 173–176] If

p lim
n→∞

n∑

k=1

E kδ2
k = a, a < ∞

and for a certain ε > 0

lim
n→∞

n∑

k=1

E |δk|2+ε = 0,

then

lim
n→∞

P
{

Vn

EVn
< z

}
= P

{
exp

[
aη − a2

2

]
< z

}
,

where η is the random variable distributed by the standard Normal law N (0, 1) .

Consider G-statistics Gn = bUn, where b is a certain number and suppose that for a
certain ρ > 0

E |Un|2+ρ ≤ c < ∞.

Then by Theorem 37.1 we get

E [Gn − J ]2 = (J)2
[
b2ea2 − 2b + 1

]2

+ o (1) .

This expression is minimal if b = e−a2
. Therefore, for G-estimator Gn = e−a2

Un we
have

E [Gn − J ]2 = (J)2
[
1− e−a2

]
+ o (1) ,

and for U -statistics we obtain

E [Un − J ]2 = (J)2
[
ea2 − 1

]
+ o (1) .

It is obvious that for large m the G-statistic is much better that the standard U -
statistic.

38. G38-ESTIMATORS OF SYMMETRIC FUNCTIONS OF EIGENVALUES

OF COVARIANCE MATRICES

The symmetric functions ∑

i1<···<il

λi1 · · ·λil
,

of eigenvalues λk of empirical covariance matrices Rmn , where the sum is over all permu-
tations i1 < · · · < il of the set 1, 2, · · · ,mn give vise to a very complicated expression.
Almost all test statistics, proposed so far, for the commonly encountered hypothe-
sis in multivariate normal theory, visual test of equality of two covariance matrices,
MANOVA, and canonical correlation, are of this type. Such functions of fixed order



Ten years of GSA 625

can be calculated on a computer without much difficulty, but for the calculation of
symmetric functions of large order, much computer time is needed. Thus, new formulas
for symmetric functions, which simplify their calculation, are of great interest.

38.1. Random determinant representation for symmetric function

Lemma 38.1. [Gir71]

Sk :=
∑

i1<···<ik

λi1 · · ·λik
= E det

[
Ξk×mΞT

k×m

]
(k!)−1

,

where
Ξk×m = (aijξij)

j=1,...,m
i=1,...,k , aij =

√
λj ,

and ξij are independent random variables with E ξij = 0, E ξ2
ij = 1.

Proof. It can be shown that

E det
[
Ξk×mΞT

k×m

]
=

m∑

l1,···,lk=1

det [bij (li)]
k
i,j=1,

where bij (li) = ailiξiliajliξjli .
Using this equality we get

E det
[
Ξk×mΞT

k×m

]
=

m∑

l1,···,lk=1

E
∑

<i1,...,ik>

± [b1i1 (li1)× · · · × bkik
(lk)]

=
m∑

l1 6=···6=lk=1

E det [ξiliξjliailiajli ]
k
i,j=1

=
m∑

l1 6=···6=lk=1

det [E ξiliξjliailiajli ]
k
i,j=1

=
m∑

l1 6=···6=lk=1

det
[
δija

2
ili

]k

i,j=1
= (k!)

∑

l1<···<lk

λl1 · · ·λlk .

Lemma 38.1 is proved.

In this section the method of the random determinant, the invariance principle for
symmetric functions of eigenvalues of empirical covariance matrices of large order, and
limit theorems for eigenvalues of random matrices are used [Gir1, Gir2, Gir54, Gir71,
Gir 84].

Theorem 38.1 [Gir71, Gir84] Let α1 ≤ · · · ≤ αmn be the eigenvalues of a covariance
matrix Rmn such that

inf
n

min
i=1,...,mn

αi > 0, sup
n

max
i=1,...,mn

αi < ∞

and λ1 ≤ · · · ≤ λmn be the eigenvalues of the empirical covariance matrix R̂mn ,

lim sup
n→∞

mnn−1 = γ, 0 < γ < 1, lim sup
n→∞

kmn−1 = β, 0 < β < 1.
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Then

p lim
n→∞


 1

m
ln

∑

i1<···<ikm

λi1 · · ·λikm
+

ln km!
m

− km

mn
ln mn

+ lim
A→∞

(∫ A

0

fn (α) dα− ln A

)]
= 0,

where non-negative function fn (α) satisfies the equation

fn(α) =
[
α +

∫ ∞

0

x (1 + xfn(α))−1 dµn (x)
]−1

; α > 0,

µn (x) is the normalized spectral function of matrix R̂mn
.

Using Theorem 38.1 and the estimator G2 of the trace of the real resolvent of the
covariance matrix we can find a G

(A)
38 -estimator of symmetric function

1
m

ln
∑

i1<···<ikm

λi1(Rm) · · ·λikm
(Rm)

of eigenvalues of covariance matrix:

G
(A)
38 =

∫ A

0

gn(α) dα− ln α +
ln km!

m
− km

mn
ln mn,

where gn(α) is the solution of the equation

gn(α) =
{

α +
1

gn(α)
[
1−G2(gn(α))

]}−1

.

39. G39-ESTIMATOR OF SYMMETRIC FUNCTION OF EIGENVALUES OF GRAM

RANDOM MATRIX

Using the proof of Theorem 38.1 we can find similar estimators of symmetric functions
of eigenvalues of Gram matrices. The spectral theory of random Gram matrices is well
developed in Chapter 2. Therefore, repeating the calculations of the estimator G38 we
find the class of estimators G39 of symmetric functions of eigenvalues of different classes
of Gram matrices.

40. G40 -ESTIMATOR OF PERMANENT OF MATRIX

40.1. The method of random determinants

In contrast to the determinant of a matrix, its permanent is a rather complicated
function of the matrix. While a determinant can be calculated on computers without
any complications, the calculation of permanents for matrices of order equal to several
dozens, using even the most powerful computers, would take hundreds of millennia.
Therefore, any formulas for permanents that enable one to simplify the computation are
of great interest. In this section the simple analytic relationship of the permanent with
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the determinant is used ([Gir1], [Gir2], [Gir5], [Gir12], [Gir19], [Gir54], [Gir71], [Gir76],
[Gir84]). It gives us the possibility to find the limit values of the permanents, when
their orders tend to infinity. The so-called invariance principle for double stochastic
matrices has been proved.

The permanent of an n× n matrix A with entries aij is defined by

perA =
∑

<i1,...,in>

a1i1a2i2 . . . anin
,

where the sum is over all permutations < i1, . . . , in > of (1, 2, . . . , n). The permanent
appears in a number of fields, including algebra, combinatorial enumeration and physical
sciences, and has been an object of research since its first appearance in 1812 in the
work of Cauchy and Binet.

It was shown by the author in [Gir1], [Gir2], [Gir5], [Gir12], [Gir19], [Gir54], [Gir71],
[Gir76], [Gir84] that

per A = E det[
√

aijξij ]2,

or
perA = E det[aijξij ] det[ξij ],

where ξij , i, j = 1, 2, . . . are independent random variables, Eξij = 0, E ξ2
ij = 1, and

where by the square root of a complex number we mean its principal value. Therefore,
using the Monte Carlo method for statistical estimators of the permanent, we can use
the following formula

G
(s)
40 =

1
s

s∑

k=1

det
[√

aijξ
(k)
ij

]2
,

where ξ
(k)
ij , i, j, k = 1, 2, . . . are independent variables, Eξ

(k)
ij = 0, Eξ2

ij = 1 and s is any
positive integer.

It is easy to see that

E|G(s)
40 − perA|2 = s−1E

∣∣det
[√

aijξ
(1)
ij

]− perA
∣∣2.

Therefore, for any ε > 0, Chebyshev’s inequality shows that

P
{|G(s)

40 − perA| < ε
} ≥ 1− s−1ε−2E

∣∣det
[√

aijξ
(1)
ij

]− perA
∣∣2.

It is easy to see that with the help of pseudo-random variables and any suitable computer
we can find a consistent estimate of a permanent very quickly and without any analytical
problems.

41. METHOD OF RANDOM DETERMINANTS. CLASS

G41-ESTIMATES OF THE PERMANENT OF A MATRIX

In this part we will not use the random simulation for estimating permanents of a
matrix. Instead of simulation we shall find some approximate formulas for the expecta-
tion of a random determinant. These formulas will allow us to avoid very cumbersome
calculations of the permanent of a matrix on a computer. We call this procedure the
random determinants method. Here, instead of a nonrandom function of certain vari-
ables, we consider expectations of a multidimensional function of random variables, and
then, after getting approximate formulas, we simplify this expression.
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For convenience sake, we assume that random variables ξij have a standard Normal
distribution N(0, 1).

THEOREM 41.1. [Gir71] If

inf
n

min
i,j=1,...,n

aij > 0, sup
n

max
i,j=1,...,n

aij < ∞, (41.1)

then the G41-estimate of n−1 ln perA is equal to ln n−∫∞
0

(
n−1

∑n
k=1 ck(α)−α−1χ(α >

1)
)

dα and

lim
n→∞

[
n−1 ln perA− ln n +

∫ ∞

0

(
n−1

n∑

k=1

ck(α)− α−1χ(α > 1)
)

dα

]
= 0, (41.2)

or

lim
n→∞

{
n−1 ln perA− ln n + lim

A→∞

[∫ A

0

(
n−1

n∑

k=1

ck(α)
)

dα− ln A

]}
= 0,

where positive real functions cj(α); j = 1, . . . , n satisfy the system of equations

ck(α) =
[
α +

n∑

l=1

n−1akl

(
1 +

n∑

j=1

n−1ajlcj(α)
)−1]−1

; α > 0; k = 1, . . . , n. (41.3)

This equation has a unique solution in the class L of positive real analytic functions
cj(α) for α > 0.

THEOREM 41.2. If the condition (41.1) is fulfilled, then the G41-estimate of

n−1 ln perA is equal to ln n +
∫∞
0

(
n−1

∑n
k=1 pk(x)

)
ln xdx and

lim
n→∞

[
n−1 ln perA− ln n−

∫ ∞

0

(
n−1

n∑

k=1

pk(x)
)

ln xdx

]
= 0, (41.4)

where pk(x) are distribution densities whose Stieltjes transforms

ckn(z) =
∫ ∞

0

(x− z)−1pk(x) dx, z = t + is, s 6= 0 (41.5)

satisfy the system of equations

ckn(z) =
[ n∑

l=1

n−1akl

(
1 +

n∑
p=1

n−1aplcpn(z)
)−1

− z

]−1

, k = 1, . . . , n (41.6)

which has a unique solution in the class of analytic functions: Im cjn(z) > 0; Im z > 0.
The functions pk(x); k = 1, . . . , n are imaginary parts of solutions mj(x) of the system
of equations

mk(x) =
[
−x +

n∑

l=1

n−1akl

(
1 +

n∑

j=1

n−1ajlmj(x)
)−1]−1

; x > 0; k = 1, . . . , n (41.7)
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where mj(x) = gj(x) + iπpj(x). The system of equations (41.7) has a unique solution
in the class of functions {gk(x); pk(x) > 0; x > 0; k = 1, . . . , n}.

42. G42-ESTIMATOR OF A PRODUCT OF MATRICES

One of the most important problems of applied mathematics is investigation of the
asymptotic behavior of distribution of the product of random matrices

n∏

k=1

X
(k)
m×m,

where X
(k)
m×m = A

(k)
m×m + Ξ(k)

m×m are independent observations, where A
(k)
m×m are un-

known deterministic matrices and Ξ(k)
m×m, k = 1, . . . , n are certain independent random

matrices. Such product of random matrices can be used for estimation of the solution
of the system of differential equations with random coefficients. We mention several
directions of investigation of distribution of the product of random matrices. The best
known method applies to the case when matrices belong to a compact group. A sec-
ond direction was developed for investigating matrices that belong to a certain locally
compact group. And a third direction is connected with limit theorems for the product
of random matrices in the scheme of series, when every matrix converges on proba-
bility to a nonrandom matrix when the number increases. In Girko’s article [Gir21],
the martingale representation of the product of random matrices was considered and
a limit theorem was proved. This representation allows us to prove limit theorems for
the product of random matrices in the general case when observations are dependent
and may have unbounded moments. Consider the simplest functional of the product of
random matrices:

Vn =

{
n∏

k=1

X
(k)
m×m

}

pl

,

where X
(k)
m×m = A

(k)
m×m + Ξ(k)

m×m are independent observations, matrices A
(k)
m×m are

unknown and Ξ(k)
m×m, k = 1, . . . , n are certain independent random matrices such that

EΞ(k)
m×m = {0}m×m , k = 1, . . . , n and p and l any fixed number of entries of matrix

n∏
k=1

X
(k)
m×m.

Let
{

n∏
k=1

A
(k)
m×m

}

pl

6= 0. Denote

Vn

EVn
=

n∏

k=1

E k−1Vn

E kVn
=

n∏

k=1

{
1 +

E k−1Vn −E kVn

E kVn

}
=

n∏

k=1

{1 + δk},

where

δk =
E k−1Vn −E kVn

E kVn
,

with E k being the conditional expectation with respect to the fixed random matrices
Xk+1, · · · , Xn. It is evident that random variables δk, k = 1, . . . , n form martingale
differences. Then, using the central limit theorem for the sum of martingale differences
we get
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Theorem 42.1. If

p lim
n→∞

n∑

k=1

E kδ2
k = a, a < ∞

and for a certain ε > 0

lim
n→∞

n∑

k=1

E |δk|2+ε = 0,

then

lim
n→∞

P
{

Vn

EVn
< z

}
= P

{
exp

[
aη − a2

2

]
< z

}
,

where η is the random variable distributed by the standard Normal law N (0, 1) .

Consider G42-statistic Gn = b
{∏n

k=1 X
(k)
m×m

}
pl

, where b is a certain number, and

suppose that for a certain ρ > 0

E |Vn|2+ρ ≤ c < ∞.

Then by Theorem 42.1 we get

E [Gn − J ]2 = (J)2
[
b2ea2 − 2b + 1

]2

+ o (1) ,

where

J =

{
n∏

k=1

A
(k)
m×m

}

pl

.

This expression will be minimal if b = e−a2
. Therefore, for G-estimator G42 =

b
{∏n

k=1 X
(k)
m×m

}
pl

we have

E [G42 − J ]2 = (J)2
[
1− e−a2

]
+ o (1) ,

and for the standard estimator we obtain

E

[
n∏

k=1

X
(k)
m×m − J

]2

= (J)2
[
ea2 − 1

]
+ o (1) .

It is obvious that for large a, the G42-statistics is much better than the standard
statistics.

43. G43-ESTIMATOR OF PRODUCT OF MATRICES IN THE SCHEME OF SERIES

Consider the product of random matrices in the scheme of series

n∏

k=1

[
Imn + X(k)

mn

]
,

where
X(k)

mn
= A(k)

mn
+ Ξ(k)

mn
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are independent observations, A
(k)
mn are unknown nonrandom matrices and Ξ(k)

mn , k =
1, . . . , n are certain independent random matrices.

Consider the simplest functional of the product of random matrices:

Vn =

{
n∏

k=1

[
Imn

+ X(k)
mn

]}

pl

,

where EΞ(k)
mn = {0}mn

, k = 1, . . . , n and p and l any fixed number of entries of the

matrix
∏n

k=1

[
Imn

+ X
(k)
mn

]
.

Let {
n∏

k=1

[
Imn

+ X(k)
mn

]}

pl

6= 0.

Denote

Vn

EVn
=

n∏

k=1

E k−1Vn

E kVn
=

n∏

k=1

{
1 +

E k−1Vn −E kVn

E kVn

}
=

n∏

k=1

{1 + δk},

where

δk =
E k−1Vn −E kVn

E kVn
,

E k is the conditional expectation with respect to the fixed random matrices
X

(k+1)
mn , · · · , X(n)

mn .
It is evident that random variables δk, k = 1, . . . , n form martingale differences.

Then, using the central limit theorem for the sum of martingale differences we get, as

in previous section, for G-statistics G43 = b

{
n∏

k=1

X
(k)
m×m

}

pl

, where b = e−a2
, a is a

certain number and

E [G43 − J ]2 = (J)2
[
1− e−a2

]
+ o (1)

We obtain for the standard estimator

E

[
n∏

k=1

X
(k)
m×m − J

]2

= (J)2
[
ea2 − 1

]
+ o (1) .

It is obvious that for large a, the G43-statistic is much better than the standard
statistics Vn =

{∏n
k=1

[
Imn + X

(k)
mn

]}
pl

.

44. CLASS OF G44-ESTIMATORS OF SOLUTIONS OF THE SYSTEM OF LINEAR

DIFFERENTIAL EQUATIONS WITH COVARIANCE MATRIX OF

COEFFICIENTS

In this section we consider a system of linear differential equations with random coeffi-
cients

d~x (t)
dt

= Ξ~x (t) , 0 ≤ t ≤ T, ~x (0) = ~c, (44.1)
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where Ξ = (ξij)
n
i,j=1 is a random symmetric real matrix of the order n, ~xT (t) =

{x1 (t) , · · · , xn (t)} and the dimension of such a system is large and every random coeffi-
cient tends to a certain constant in probability when the dimension of this system tends
to infinity, i.e., no single coefficient is influential enough to dominate the system as a
whole. The self-averaging of the solutions of a system of linear differential equations
with random coefficients means that the vector-solution ~x(t) converges to the solution
of a certain nonrandom equation when the dimension of system (44.1) tends to infinity.
It is well known that the solution of system (44.1) is equal to

~x (t) = exp {tΞ}~c, 0 ≤ t ≤ T.

The need to solve such systems arises in different problems of calculus, differential
and integral equations, experimental design, etc.

Unfortunately, in practical problems, it is very difficult to find the distribution func-
tions of random coefficients ξij of such systems. For this reason, we have developed
a new method of analysis in which these coefficients ξij have an arbitrary distribution
function. It is natural in this case to use the methods of General Statistical Analysis.

44.1 Formulation of the problem under the conditions of general statistical
analysis

The system

d~x (t)
dt

=

{
n−1

n∑

k=1

Xi

}
~x (t) , 0 ≤ t ≤ T

with random coefficients arises when, instead of a matrix of coefficients Ξ, we have n

observations Xi of random matrices Ξ. Moreover, replacing a nonlinear system d~y(t)
dt =

~f (~y (t)) by a system of linear differential equations, we arrive at a system of large
dimension. This example clearly shows that we must solve this problem within the
framework of general statistical analysis because both parameters, number of observa-
tions, and the number of interval partitions for integration and differentiation tend to
infinity. Besides, we cannot choose these two parameters arbitrarily large, because the
growth of the first parameter leads to large computer time. The growth of the second
parameter leads to large losses in energy and material resources, and sometimes it is
not possible to increase these parameters. Suppose that the following system is given:

d~x (t)
dt

= Rn~x (t) , 0 ≤ t ≤ T, ~x (0) = ~c, (44.2)

where Rn is a covariance matrix. The problem is to find a G-estimator of the expression
~bT ~x (t) = ~bT exp {tRn}~c, 0 ≤ t ≤ T, when the empirical covariance matrix R̂n is given,
and~b is a n-dimensional vector. Using estimators G2 and G25 we find the G44-estimator
of the value ~bT ~x (t) = ~bT exp {tRn}~c, 0 ≤ t ≤ T :

G44 = (2πi)−1~b

∮

|z|=δ

exp (tz)
θ̂ (z)

z

[
R̂n − θ̂ (z)

]−1

~c dz,

where the integral is taken around the unit circle, δ > Gmax
26 , and θ̂ (z) is the measurable

solution of the equation
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θ̂ (z)
1
n

Tr
{

R̂mn − θ̂ (z) Imn

}−1

−
(
1− mn

n

)
+

θ̂ (z)
z

= 0.

Theorem 44.1. Suppose ~x1, · · · , ~xn are the sample of independent observations of a
random vector,

~xk = R1/2
mn

~ξk + ~a, E ~ξk = 0, E ~ξk
~ξT
k = Imn , ~ξT

k = {ξik, i = 1, ...,mn } ,

random variables ξik are independent and for some β > 0

E |ξij

√
n|4+δ ≤ c < ∞,

λi(Rmn
) < c < ∞, i = 1, ...,mn,

lim inf
n→∞

mnn−1 > 0, lim sup
n→∞

mnn−1 < ∞

~bT~b + ~cT~c ≤ c < ∞,

then with probability one for every t > 0 and T > 0

lim
n→∞

{
G44 −~bT exp (tRn)~c

}
= 0, 0 ≤ t ≤ T.

45. CLASS OF G45-ESTIMATORS OF SOLUTIONS OF THE SYSTEM OF LINEAR

DIFFERENTIAL EQUATIONS WITH NON-NEGATIVE DEFINED MATRIX

OF COEFFICIENTS

Similarly we can find an estimator for the case when the matrix of the coefficients of
system (44.1) is AAT , where A is a certain nonrandom matrix.

Suppose that

d~x (t)
dt

= AAT ~x (t) , 0 ≤ t ≤ T, ~x (0) = ~c,

where A is a triangular matrix and the problem is to find the G-estimator of the
expression ~bT ~x (t) = ~bT exp

{
tAAT

}
~c, 0 ≤ t ≤ T, when observation Ξ of matrix A+H

is given, and ~b is an n-dimensional vector. Using estimators G2 and G29 we find the
G45-estimator of the value ~bT ~x (t) = ~bT exp

{
tAAT

}
~c, 0 ≤ t ≤ T :

G45 = (2πi)−1~b

∮

|z|=δ

exp (tz)ϕ
(
θ̂ (z) , ΞΞT

) [
1 + γϕ

(
θ̂ (z) , ΞΞT

)]−1

~c dz,

where ϕ
(
z, AAT

)
= m−1

n Tr
[
AAT − zImn

]−1, δ > Gmax
29 , and θ̂ (z) is the measurable

solution of the equation
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− θ̂ (z)
{

1 +
1
n

Tr
[
ΞΞT − θ̂ (z) Imn

]−1
}2

+
(
1− mn

n

) {
1 +

1
n

Tr
[
ΞΞT − θ̂ (z) Imn

]−1
}

= −z

Ξ is an observation of the matrix A + H, H is a certain random matrix.

Theorem 45.1. If, for every n, the entries ξ
(n)
ij , i = 1, . . . ,mn; j = 1, . . . , n of random

matrix Ξ are independent, E ξ
(n)
ij = a

(n)
ij , Var ξ

(n)
ij = n−1; for a certain δ > 0

E
∣∣(ξ(n)

ij − a
(n)
ij )

√
n
∣∣2+δ ≤ c1 < ∞, max

i=1,...,m

n∑

j=1

a2
ij ≤ c2 < ∞,

0 < lim inf
n→∞

mn

n
< lim sup

n→∞
mn

n
< 1,

~bT~b + ~cT~c ≤ c < ∞,

then with probability one for every t > 0

lim
n→∞

{
G45 −~bT exp

(
tAAT

)
~c
}

= 0, 0 ≤ t ≤ T.

46. G46-ESTIMATOR FOR SOLUTION OF THE SYSTEM OF LINEAR DIFFEREN-

TIAL EQUATIONS WITH SYMMETRICAL MATRIX OF COEFFICIENTS

Suppose that as before

d~x (t)
dt

= An~x (t) , 0 ≤ t ≤ T, ~x (0) = ~c, (46.1)

where An is a symmetric matrix and the problem is to find the G-estimator of the
expression ~bT ~x (t) = ~bT exp {tA}~c, 0 ≤ t ≤ T, when observation matrix Xn = An + Ξn

is given, and ~b is an n-dimensional vector. Using estimators G31 and G32 we find the
G46-estimator of the value ~bT ~x (t) = ~bT exp {tAn}~c, 0 ≤ t ≤ T :

G46 = (2πi)−1~b

∮

|z|=δ

exp (tz)
[
Xn − θ̂ (z)

]−1

~cdz,

where δ > Gmax
32 , θ̂ (z) is the measurable solution of the G31 equation

θ̂ (z) + n−1Tr
[
Ξ− θ̂ (z) In

]−1

= z.

Theorem 46.1. If, for every n, random entries ξ
(n)
ij , i ≥ j, i, j = 1, . . . , n are such that

E (ξ(n)
ij )2 = n−1, for some δ > 0

E |ξij

√
n|4+δ ≤ c < ∞, max

i=1,...,n

n∑

j=1

a2
ij ≤ c < ∞, ~bT~b + ~cT~c ≤ c < ∞,

then with probability one for every t > 0

lim
n→∞

{
G46 −~bT exp (tAn)~c

}
= 0, 0 ≤ t ≤ T.
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47. G47-ESTIMATOR FOR SOLUTION OF THE SYSTEM OF LINEAR

DIFFERENTIAL EQUATIONS

In ths section we consider an arbitrary matrix of coefficients of system (44.1). As in
the previous two sections we use the Cauchy integral formula

f (a) = (2πi)−1
∮

Γ

f (z) (z − a)−1 dz, (47.1)

dn

dan
f (a) (n!)−1 = (2πi)−1

∮

Γ

f (z) (z − a)−n−1 dz; n = 1, 2, ...,

where f(z) is an analytic function, a is inside a circle Γ, which is positively oriented,
and the integral is taken around the unit circle.

47.1. V1-Transform of the solution of the system of linear differential equa-
tions

Denote R = (Ξ− zI)−1
. Using formula (44.1) for the solution of the system of equation

d~x (t)
dt

= Ξ~x (t) , ~x (0) = ~c, 0 ≤ t ≤ T,

we have

~aT ~x (t) = ~aT exp {tΞ}~c = − (2πi)−1
∮

Γ

etz~aT R (z)~cdz, (47.2)

where G is a positively oriented circle containing all eigenvalues of matrix X, ~aT =
{a1, · · · , an} is an arbitrary vector.

Using the integral representation for solutions of SLAE (see [Gir84]) we prove

Lemma 47.1. (V1-Transform of the solution of the system of linear differential equations)

~aT ~x (t) = − 1
4πi

lim
α↓0

∂

∂γ

∮

Γ

etz
{

ln det
[(

Ξ− zI + γ~c~aT
) (

Ξ− zI + γ~c~aT
)∗

+ αI
]

−i ln det
[(

Ξ− zI + iγ~c~aT
) (

Ξ− zI + iγ~c~aT
)∗

+ αI
]}

γ=0
dz. (47.3)

47.2. V2-Transform of the solution of the system of linear differential equa-
tions

Using (47.3) and the integral representation for solutions of SLAE (see [Gir84]) we get

Lemma 47.2. (V2-Transform of the solution of the system of linear differential equations)

~aT ~x (t) = ~aT exp {tΞ}~c = (2πi)−1
∮

Γ

etz~aT (zI − Ξ)−1
~c dz

= − lim
α↓0

(2πi)−1
∮

Γ

etz 1
2

∫ ∞

α

∂

∂γ
Tr [Q (y, γ)− iQ (y, iγ)]γ=0 dy dz,

(47.4)
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where

Q (y, γ) =
{

yI +
(
Ξ− zI + γ~c~aT

) (
Ξ− zI + γ~c~aT

)∗}−1

.

47.3. V3-Transform of the solution of the system of linear differential
equations

When random entries of a matrix have different variances, we will use the differential
representation for solutions of SLAE (see Chapter 6).

Lemma 47.3. (V3-Transform of the solution of the system of linear differential equa-
tions). If ~aT~aT ≥ c > 0, then

~aT ~x (t) = ~aT exp {tΞ}~c

= lim
α↓0

(2πi)−1
∮

Γ

etz ∂

∂γ

[[
~aT G (α, γ)~a

]

2~aT G (α, 0)~a
− i

[
~aT G (α, iγ)~a

]

2~aT G (α, 0)~a

]∣∣∣∣∣
γ=0

dz,
(47.5)

where

G (α, γ) =
{

αI +
(
Ξ− zI + γ~c~aT

)∗ (
Ξ− zI + γ~c~aT

)}−1

.

We call the expression

~aT ~V1α (t) = − 1
4πi

∮

Γ

etz ∂

∂γ
{ln det Q (α, γ)− i ln det Q (α, iγ)}γ=0 dz

a linear form of the V1-regularized solution of the system of linear differential equations,
and

~aT ~V2α (t) = − 1
4πi

∮

Γ

etz

{
1
2

∫ ∞

α

∂

∂γ
Tr [Q (y, γ)− iQ (y, iγ)]γ=0 dy

}
dz

a linear form of the V2-regularized solution of the system of linear differential equations
and

~aT ~V3α (t) =
1

2πi

∮

Γ

etz

{
∂

∂γ

[[
~aT G (α, γ)~a

]

4~aT G (α, 0)~a
− i

[
~aT G (α, iγ)~a

]

4~aT G (α, 0)~a

]}

γ=0

dz

a linear form of the V3-regularized solution of the system of linear differential equations,
where α > 0.

47.4. Limit theorem for singular values of random complex matrices

It follows from [Gir84]

Theorem 47.1. [Gir84] Let Ξ be a random complex matrix of the size n × n, whose

entries ξ
(n)
ij ; i = 1, . . . , n; j = 1, . . . , n are independent for every n and are defined on

common probability space,

EΞ = A = (aij)
j=1,...,n
i=1,...,n E ξ

(n)
kp = a

(n)
kp ;
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E
∣∣∣ξ(n)

kp − a
(n)
kp

∣∣∣
2

= n−1; k = 1, ..., n; p = 1, ..., n,

for a certain δ > 0

sup
n

max
i=1,...,n;
j=1,...,n

E
∣∣∣
(
ξ
(n)
ij −E ξ

(n)
ij

)√
n
∣∣∣
4+δ

< ∞,

sup
n

max
k=1,...,n

n∑

j=1

[
|akj |2 + |ajk|2

]
< ∞,

αn (AA∗) ≤ c1 < ∞,

βN = max
vi



vi

[
1− n−1

n∑

k=1

1
(αk − vi)

]2


 ,

and vi are the real solutions of the L2 equation

1− n−1
n∑

k=1

1
(αk − vi)

= 2vin
−1

n∑

k=1

1
(αk − vi)

2 ,

where

α1 (AA∗) ≤ · · · ≤ αn (AA∗)

are the singular values of matrix A.

Then with probability one

lim
n→∞

[λmax (ΞΞ∗)− βN ] = 0; βN ≤ c < ∞,

where c is a certain constant.

Thus, we see that in the most interesting case for random matrices the absolute
values of their eigenvalues are bounded in probability. This result allows us to use limit
theorems for the solutions of the system of linear differential equations with random
coefficients.

47.5. Limit theorem for V-transforms of the solution of the system of linear
differential equations

Theorem 47.2. If, in addition to the conditions of Theorem 47.1, ~aT~a ≥ c > 0, and

lim supn→∞
[
~aT~a + ~cT~c

]
< ∞, then with probability one

lim
α↓0

lim sup
n→∞

sup
0≤t≤T

∣∣∣∣∣∣∣
~aT etΞ~b +

∮

Γ:|z|2>βN

etz

4πi

× ∂

∂γ
{ln det Q (α, γ)− i ln det Q (α, iγ)}γ=0 dz

∣∣∣∣ = 0,
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lim
α↓0

lim sup
n→∞

sup
0≤t≤T

∣∣∣∣∣∣∣
~aT etΞ~b +

∮

Γ:|z|2>βN

etz

4πi

×1
2

∫ ∞

α

∂

∂γ
Tr [Q (y, γ)− iQ (y, iγ)]γ=0 dz

∣∣∣∣ = 0,

lim
α↓0

lim sup
n→∞

sup
0≤t≤T

∣∣∣∣∣∣∣
~aT etΞ~b−

∮

Γ:|z|2>βN

etz

4πi

× ∂

∂γ

[[
~aT G (α, γ)~a

]

~aT G (α, 0)~a
− i

[
~aT G (α, iγ)~a

]

~aT G (α, 0)~a

]

γ=0

dz

∣∣∣∣∣∣
= 0,

where

Q (y, γ) =
{

yI +
(
Ξ− zI + γ~b~aT

)(
Ξ− zI + γ~b~aT

)∗}−1

,

G (α, γ) =
{

αI +
(
Ξ− zI + γ~c~aT

)∗ (
Ξ− zI + γ~c~aT

)}−1

.

Consider G-estimator: G47 (t) = ~aT exp {tXn}~c, Xn = An + Ξn. From [Gir84] it
follows

Theorem 47.3. Let the random entries ξ
(n)
ij , i, j = 1, . . . , n of real matrix Ξ be inde-

pendent for every n,

E ξ
(n)
ij = 0, Varξ(n)

ij = n−1, ~aT~a ≥ c > 0,

where c is some constant,

sup
n

max
i,j=1,...,n





n∑

j=1

[∣∣∣a(n)
ij

∣∣∣ + |cj |
]

+
n∑

i=1

[∣∣∣a(n)
ij

∣∣∣ + |ai|
]


 < ∞,

and let Lindeberg’s condition be fulfilled: for every τ > 0

lim
n→∞

max
i,j=1,...,n




n∑

j=1

E
[
ξ
(n)
ij

]2

χ
{∣∣∣ξ(n)

ij

∣∣∣ > τ
}

+
n∑

i=1

E
[
ξ
(n)
ij

]2

χ
{∣∣∣ξ(n)

ij

∣∣∣ > τ
}]

= 0,

where χ is the indicator of a random event. Then for any t > 0

p lim
n→∞

[
G47 (t)− ~aT exp {tA}~c

]
= 0.
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48. G48-ESTIMATOR FOR SOLUTION OF THE SYSTEM OF LINEAR DIFFEREN-

TIAL EQUATIONS WHEN COEFFICIENTS HAVE ARBITRARY VARIANCES

Suppose that

d~x (t)
dt

= An~x (t) , 0 ≤ t ≤ T, ~x (0) = ~c, (48.1)

where An is a square matrix, and the problem is to find the G-estimator of the expression
~bT ~x (t) = ~bT exp {tA}~c, 0 ≤ t ≤ T when observation of matrix X = A+Ξ is given and
~b is an n-dimensional vector. Let the entries of matrix Ξ satisfy the following conditions:
ξij , i > j, i, j = 1, . . . , n are independent for every n,

E ξij = 0, E ξ2
ij = n−1, E ξijξji = ρn−1, i 6= j.

Using estimators G34 we find the G48-estimator of value ~bT ~x (t) = ~bT exp {tAn}~c, 0 ≤
t ≤ T ;

G48 =
1

2πi

∮

|z|=δ

etz

{
∂

∂γ

[ ~bT G34(α, γ)~c

4~bT G34(α, 0)~c
− i

~bT G34(α, iγ)~c

4~bT G34(α, 0)~c

]}

γ=0

dz,

where
G34(α, γ) =

{
Iα + (Ξ− zI + γ~c~bT )∗(Ξ− Iz − γ~c~bT )

}−1
,

and δ > Gmax
32 , θ̂ (z) is the measurable solution of the equation

θ̂ (z) + n−1Tr
[
Ξ− θ̂ (z) In

]−1

= z.

and

~bT~b + ~cT~c ≤ c < ∞
then with probability one for every t > 0

lim
n→∞

{
G48 −~bT exp (tAn)~c

}
= 0.

49. G49–ESTIMATOR FOR SOLUTION OF THE SYSTEM OF LINEAR DIFFEREN-

TIAL EQUATIONS WITH SYMMETRIC BLOCK STRUCTURE

Suppose that

d~x (t)
dt

= An~x (t) , 0 ≤ t ≤ T, ~x (0) = ~c, (49.1)

where An is a symmetric matrix and the problem is to find the G-estimator of the
expression ~bT ~x (t) = ~bT exp {tA}~c, 0 ≤ t ≤ T, when observation of matrix X = A + Ξ
is given, ~b is an n-dimensional vector and the blocks of the matrix Ξ are independent.
Using estimators G8 we find the G45-estimator of value ~bT ~x (t) = ~bT exp {tAn}~c, 0 ≤
t ≤ T :

G49 = ~b

∮

|z|=δ

exp (tz)
[
Xn − θ̂ (z)

]−1

~cdz,
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where δ > Gmax
32 , Apq×pq =

(
A

(n)
ks

)p

k,s=1
, A

(n)
ks = A

(n)T
ks and A

(n)
ks ; k ≥ s, k, s = 1, ..., p

are blocks of the dimension q, and let ~x, ~b be vectors.

~dT ~G8 = −Re [Xpq×pq + C (ε) + iεIn]−1 ~b,

where Xpq×pq is an observation of matrix Ξpq×pq + Apq×pq, Ξpq×pq =
(
Ξ(n)

ks

)p

k,s=1
,

Ξ(n)
ks = Ξ(n)T

ks and Ξ(n)
ks ; k ≥ s, k.s = 1, ..., p are independent random blocks of the

dimension q, Cpq×pq (ε) =
(
δijC

(n)
jj (ε)

)p

i,j=1
and the matrix-blocks Css (ε) satisfy in

the point z = iε the canonical equation

Cjj (ε) = ReE
p∑

s=1

Ξ(n)
js Qss Ξ(n)T

js

∣∣∣
Q=[Xpq×pq+Cpq×pq(ε)+iεIn]−1

.

It is proven in [Gir84] ] that under certain conditions, for every γ > 0

lim
ε↓0

lim
n→∞

P
{∣∣∣~dT

(
~G8 − ~xε

)∣∣∣ > γ
}

= 0.

50. G50-CONSISTENT ESTIMATOR FOR SOLUTION OF LINEAR

PROGRAMMING PROBLEM (LPP)

This section is devoted to the main G-estimator for the solutions of the LPP. Consider
a standard deterministic LPP:

max
~x:A~x≤~b, ~x≥~0, ~x∈Rn

~cT ~x.

In some applied problems, the vectors ~c and ~b are known, but matrix a is unknown, but
sample observations are available.

We will formulate the LPP as follows: find

inf
~u∈M

~cT A−1
(
~b + ~u

)
= ~cT A−1

(
~b + ~u∗

)
,

where
M =

{
~u :

∥∥∥A−1
(
~b + ~u

)∥∥∥ < 1; A−1
(
~b + ~u

)
> 0

}
,

when instead of a square unknown symmetric matrix A = (aij) of order n we have the
observation of a random symmetric matrix Ξ = (ξij) , whose entries ξ

(n)
ij , i ≥ j, i, j =

1, ..., n are independent for every n,

E ξ
(n)
ij = a

(n)
ij , Var ξ

(n)
ij = σ

(n)
ij , i ≥ j, i, j = 1, ..., n,

sup
n

max
i=1,...,n

n∑

j=1

σ
(n)
ij < ∞.

In the general case, the system of equations Ξ~x = ~b+~u for the fixed vector ~u does not
have any solutions, or has an uncountable number of solutions. We choose an estimator
of the solution of this system in the regularized form:
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~x(n)
ε = Re [iεIn + Yn + Ξn]−1

(
~b + ~u

)
,

where Yn = {γiδij , i, j = 1, ..., n} is the diagonal matrix of order n, γ1, γ2, ..., γn are
the real solutions of the system of equations

ϕi {Yn} = 0, i = 1, ..., n;

where

ϕj {Yn} = γj − Re
∑n

k=1
σ

(n)
kj

{
(Yn + iεIn + Ξn)−1

}
kk

,

ε 6= 0 is a real parameter. Let us introduce the G50-estimator :

G50 (ε, n) = inf
~u∈L

~cT Re [iεIn + Yn + Ξn]−1
(
~b + ~u

)
,

L =
{
~u : ~u ≤ 0;

∥∥∥Re [iεIn + Yn + Ξn]−1
(
~b + ~u

)∥∥∥ ≤ 1 ;

Re [iεIn + Yn + Ξn]−1
(
~b + ~u

)
> 0

}

of the expression ~cT A−1
(
~b + ~u∗

)
. Using the proof of Theorem 8.1 from Chapter 7

[Gir84] we get

Theorem 50.1. Let

sup
n

max
i=1,...,n

n∑

j=1

{
|aij |+ σ

(n)
ij + |cj |+ |bj |

}
< ∞,

lim
N→∞

lim
n→∞

n∑

j=N

{|aij |+ |cj |+ |bj |} < ∞,

and let Lindeberg’s condition hold : for every τ > 0

lim
n→∞

max
i=1,...,n

n∑

j=1

E
[
ξ
(n)
ij − a

(n)
ij

]2

χ
{∣∣∣ξ(n)

ij − a
(n)
ij

∣∣∣ > τ
}

= 0,

sup
n

max
i=1,...,n

n∑

j=1

σ
(n)
ij λ−2

j < 1,

where λ1 ≥ · · · ≥ λn are eigenvalues of the matrix A, and

inf
n
|λn| > 0.

Then

lim
ε→0

p lim
n→∞

[
G50 (ε, n)− ~cT A−1

(
~b + ~u∗

)]
= 0.
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51. G51-ESTIMATOR OF SOLUTIONS OF LPP

Using some results from [Gir84] (Chapter 11, Section 17; Chapter 13, Section 11) we find
the G51-consistent estimator for the solution of the LPP, i.e., we obtain the estimator
under the conditions of general statistical analysis:

G51 (ε, n) = min
~u∈L

~cT B
(
~b + ~u

)
,

where

B = Re
{

I
(
θ̂1 + iε

)
+ (A + Ξ)T (A + Ξ)

}−1

(A + Ξ)T

L =
{
~u : ~u ≤ 0, B(~b + ~u) ≥ 0, (~b + ~u)T BT B(~b + ~u) ≤ 1

}
,

θ̂1 ≥ θ̂2 ≥ · · · ≥ θ̂k ≥ · · · are measurable real solutions of the equation fn(θ) = α, where

fn(θ) = θRe [1 + δ1a(θ)]2

− εIm [1 + δ1a(θ)]2 + (δ1 − δ2)[1 + δ1Re a(θ)],

a(θ) = n−1Tr
[
I(θ + iε) + (A + Ξ)T (A + Ξ)

]−1

,

δ1 = σ2
nn, δ2 = σ2

nm.

Theorem 51.1. For any n = 1, 2, ..., let the entries x
(n)
pl , p = 1, ..., n, l = 1, ...,m of

the matrix X be independent,

Ex
(n)
pl = a

(n)
pl , Varx

(n)
pl = σ2

n.

Let the generalized G-condition be fulfilled:

lim sup
n→∞

σ2
nns−1

n = c1 < ∞, lim sup
n→∞

σ2
nmns−1

n = c2 < ∞, lim sup
n→∞

mnn−1 = c3 < 1,

λm + α > h > 0, where λ1 ≥ · · · ≥ λm are eigenvalues of the matrix AT A;

lim sup
n→∞

[
~bT~b + sup

k=1,...,m
~aT

k ~ak

]
< ∞,

where ~ak are columns of the matrix A,

sup
n

λ1 < ∞,

for a certain δ > 0

sup
n

max
p=1,...,n,
l=i,...,m

E
∣∣∣√n

[
x

(n)
pl − apl

]∣∣∣
4+δ

< ∞,

1− 2τ − 4−1τ2 > 0,
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where τ = δ1n
−1

∑m
k=1 (α + λk)−1

and

lim sup
n→∞

δ1 − δ2 + 2α

1− 2τ − 4−1τ2
δ1n

−1
∑m

k=1
(α + λk)−2

< 1.

Then

lim
ε→0

p lim
n→∞

∣∣∣∣G51 (ε, n)−min
~u∈R

~cT
{
Iα + AT A

}−1
AT (~b + ~u)

∣∣∣∣ = 0,

where

R =
{

~u : ~u ≤ 0, Q
(
~b + ~u

)
≥ 0,

(
~b + ~u

)T

QT Q
(
~b + ~u

)
≤ 1

}
,

Q =
(
Iα + AT A

)−1
AT .

52. G52-ESTIMATOR OF SOLUTION OF LPP WITH NONSYMMETRIC

MATRIX A

From the previous Section (see also [Gir84]) it follows that the LPP can be formulated
in the following form: find

min
~u∈L

~cT
(
αI + AT A

)−1
AT

(
~b + ~u

)
,

where

L =
{

~u : ~u ≤ 0; B̂
(
~b + ~u

)
≥ 0;

(
~b + ~u

)T

B̂T B̂
(
~b + ~u

)
≤ 1

}
,

B̂ =
(
αI + AT A

)−1
AT .

Therefore, by Theorem 6.1 from Chapter 6 [Gir84], the following statement is valid.
Consider the G-estimator:

G52 (ε, n) = min
~θ∈M

~cT
[
C1 + iεIm + XT (C2 − iεIn)−1

X
]−1

×XT (C2 − iεIn)−1
(
~b + ~θ

)
,

where C1 = (c1iδij)m
i,j=1, C2 = (c2iδij)n

i,j=1 are diagonal matrices, whose diagonal entries
satisfy the canonical equation:





c1p = α +
n∑

j=1

σ
(n)
jp

{[
(δij (c2i − iε)) + X (δij (c1i + iε))−1

XT
]−1

}

jj

; p = 1, ..., m,

c2k = 1 +
m∑

j=1

σ
(n)
kj

{[
(δij (c1i + iε)) + XT (δij (c2i − iε))−1

X
]−1

}

jj

, k = 1, ..., n.

,

M =
{

~θ : , ~θ ≤ 0, R
(
~b + ~θ

)
≤ 0,

(
~b + ~θ

)T

RT R
(
~b + ~θ

)
≤ 1

}
,



644 Chapter 14

and
R =

[
C1 + iεIm + XT (C2 − iεIn)−1

X
]−1

XT (C2 − iεIn)−1
.

Theorem 52.1. Let Ξ be a random matrix of the size n ×m; m ≤ n, whose entries

ξ
(n)
ij ; i = 1, ..., n; j = 1, ..., m are independent for every n,

EΞ = A = (aij)
j=1,...,m
i=1,...,n ; E ξ

(n)
kp = a

(n)
kp ;

E
[
ξ
(n)
kp − a

(n)
kp

]2

= n−1; k = 1, ..., n; p = 1, ...,m,

for a certain δ

sup
n

max
i=1,...,n;
j=1,...,m

E
∣∣∣
(
ξ
(n)
ij −E ξ

(n)
ij

)√
n
∣∣∣
4+δ

< ∞,

sup
n

max
k=1,...,m;
l=1,...,n




n∑

j=1

[|ajk|+ |bj |] +
m∑

j=1

|cj |+ |alj |

 < ∞; lim inf

n→∞
cT c > 0

and (see Section 50)

lim inf
n→∞

β1n > 0.

Then

lim
ε→0

p lim
n→∞

∣∣∣∣G52 (ε, n)−min
~u∈L

~cT B
(
~b + ~u

)∣∣∣∣ = 0,

where B =
[
Iα + AT A

]−1
AT , α > 0,

L =
{
~u, ~u ≤ 0, B(~b + ~u) ≥ 0, (~b + ~u)T BT B(~b + ~u) ≤ 1

}
.

53. G53-ESTIMATOR OF SOLUTION OF LPP OBTAINED BY INTEGRAL REPRE-

SENTATION METHOD

Our review would be incomplete if we did not mention the integral representation
method. In this section, under rather general assumptions and by means of integral
representations for determinants, we formulate the limit theorem for the distribution of
~x∗n of the equation

min
~xn: An(ω)~xn≤~bn(ω); ~xn≥0

E f
{
~xT

n
~ξn (ω)

}
= E f

{
~x∗Tn

~ξn (ω)
}

where An (ω) is a random n× n matrix, ~xn, ~ξ n (ω), ~bn (ω) are random vectors and f
is a measurable function. The basic result is that under certain conditions, the matrix
An (ω) can be replaced by the approximate matrix which has only diagonal random
entries equal to some sums of entries of the matrix An (ω). If the law of large numbers
holds for these sums, then the diagonal entries can be replaced by deterministic values.
The obtained result makes it possible to simplify the calculation of the solution ~x∗n
considerably, as well as to reduce the original stochastic problem to a deterministic one
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under certain conditions. Assume, that we have to solve the following linear stochastic
problem: find

inf E f
(
~xn, ~ξ n (ω)

)
= inf

G∈L

∫
f (~u2, ~u1) dG (~u1, ~u2 )

on the distribution function set

L = {G (~u1, ~u2)}
=

{
P

[
~xn (ω) < ~u1, ~ξ n (ω) < ~u2, ‖~xn (ω)‖ ≤ 1, ~xn (ω) ≥ 0

]
, ~v ≤ 0

}
,

where ~x(ω) is a solution of the system of equation

{I + An (ω)} ~xn (ω) = ~ηn (ω) + ~v,

An =
(
ξ
(n)
ij

)
is a random matrix of order n; ~xn (ω) , ~ηn (ω) , ~v are nonrandom vectors,

f is a certain measurable function chosen in such a way that there exists the integral
E f

(
~xn (ω) , ~ξn(ω)

)
and random vectors ~ξn(ω), ~ηn (ω) do not depend on matrix An =(

ξ
(n)
ij

)
.

Consider the G-estimator:

G53 = inf
~vn≤0, G∈L

∫
f (~u2, ~u1) dG (~u1, ~u2),

where

L =
{[

~yn (ω) < ~u1, ~ξn(ω) < ~u2, ‖~yn (ω)‖ ≤ 1, ~yn (ω) ≥ 0
]
, ~v ≤ 0

}

and ~yn (ω) is a solution of the system of equations


In + diag


 ∑

p∈Ti∪Ki

νpiνip, i = 1, ..., n


 + Xn



 ~yn = ~ηn(ω) + ~vn.

Here Ti and Ki are certain sets [Gir54, p. 248].
Using Theorem 8.4.1 from [Gir54, p.248] and the proofs of the previous theorems we

get

Theorem 53.1. Let the vectors

(
ξ
(n)
ij , ξ

(n)
ji

)
, i ≥ j; i, j = 1, ..., n

be independent for every n, and asymptotically constant,

lim
h→∞

lim
n→∞

P





∣∣∣∣∣
n∑

i=1

ν
(n)
ii

∣∣∣∣∣ +
n∑

i,j=1

[
ν

(n)
ij

]2

≥ h



 = 0,

sup
n

[|TrBn|+ TrBnBT
n

]
< ∞,
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ν
(n)
ij = ξ

(n)
ij − a

(n)
ij − ρ

(n)
ij , ρ

(n)
ij =

∫

|x|<τ

xdP ξ
(n)
ij − a

(n)
ij < x,

bij = ρij + aij , Bn = (bij),

τ > 0 an arbitrary constant,

lim
h↓0

lim inf
n→∞

P {|detAn| > h} = 1, lim
h→∞

lim
n→∞

P
{∥∥∥~ξn

∥∥∥ + ‖~ηn‖ ≥ h
}

= 0,

p lim
n→∞


 ∑

p∈Ti∪Ki

νpiνip − ci


 = 0, i = 1, ..., n,

where cp are certain nonrandom constants, and the function |f (~u2, ~u1)| is bounded by
a nonrandom constant. Then

G53 = inf
F∈R

∫
f (~u2, ~u1) dF (~u1, ~u2 ) + 0(1),

where F is a set of distribution functions

L = {F (~u1, ~u2)}
=

{
P

[
~yn (ω) < ~u1, ~ξ n (ω) < ~u2, ‖~yn (ω)‖ ≤ 1, ~yn (ω) ≥ 0

]
, ~v ≤ 0

}

and ~yn (ω) is a solution of the system of equations

{In + Bn} ~yn(ω) = ~ηn(ω) + ~vn.

54. G54-ESTIMATOR OF SOLUTION OF LPP WITH BLOCK STRUCTURE

Suppose that instead of a matrix A we have a block matrix A+X of the size p1q1×p2q2,

where Ξ(n)
ks , k = 1, ..., p1; s = 1, ..., p2 are independent, EΞ(n)

ij = 0, E
∥∥∥Ξ(n)

ij

∥∥∥
2

< ∞.

From Section 52 it follows that the LPP can be formulated in the following form:
find

min
~u∈L

~cT
(
αI + AT A

)−1
AT

(
~b + ~u

)
,

where

L =
{

~u : ~u ≤ 0; B
(
~b + ~u

)
≥ 0;

(
~b + ~u

)T

BT B
(
~b + ~u

)
≤ 1

}
,

B =
(
αI + AT A

)−1
AT .

By virtue of Theorem 5.1 [Gir84, Chapter 8] and Theorem 5.1 [Gir84, Chapter 10]
the following statement is valid [Gir84]. We introduce the following G-estimator:
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G54 = min
~θ∈M

~cT
[
C1 + iεIm + XT (C2 − iεIn)−1

X
]−1

XT (C2 − iεIn)−1
(
~b + ~θ

)
,

where

M =
{

~θ : , ~θ ≤ 0, R
(
~b + ~θ

)
≤ 0,

(
~b + ~θ

)T

RT R
(
~b + ~θ

)
≤ 1

}
,

R =
[
C1 + iεIm + XT (C2 − iεIn)−1

X
]−1

XT (C2 − iεIn)−1
,

where A is a matrix of size np×mq, n ≥ m, α > 0 is a parameter of regularization,ε >

0; ~b ∈ Rnp; ~d ∈ Rmq; X is an observations of the matrix A + Ξ, Ξ =
(
Ξ(n)

ij

)j=1,...,m

i=1,...,n

is a random matrix with independent blocks Ξ(n)
ij , EΞ(n)

ij = 0, E
∥∥∥Ξ(n)

ij

∥∥∥
2

< ∞, and

C1 = (C1iδij)
m
i,j=1 , C2 = (C2iδij)

n
i,j=1 are block diagonal real matrices that are arbitrary

measurable solutions of the system of nonlinear equations

C1l + Re
n∑

j=1

[
EΞ(n)T

jl {Qjj}Ξjl

]
Q=[C2−iεIn+X(C1+iεIm)−1XT ]−1 = Iα;

C2k + Re
m∑

j=1

[
EΞ(n)

kj {Θjj}ΞT
kj

]
Θ=[C1+iεIm+XT (C2−iεIn)−1X]−1 = I,

k = 1, ..., n; p = 1, ..., m.

Theorem 54.1. Let

lim
n→∞


 max

i=1,...,p1

p2∑

j=1

E ‖Ξij‖2 + max
i=1,...,p2

p1∑

j=1

E ‖Ξji‖2

 < ∞,

and let Lindeberg’s condition be fulfilled: for any τ > 0

lim
n→∞



 max

i=1,...,p1

p2∑

j=1

E ‖Ξij‖2 χ (‖Ξij‖ > τ)

+ max
i=1,...,p2

p1∑

j=1

E ‖Ξji‖2 χ (‖Ξji‖ > τ)



 = 0,

sup
p1,p2

[
p1q1∑

i=1

|bi|+
p2q2∑

i=1

|ci|
]

< ∞,

and

lim
n→∞


 max

i=1,...,p1

p2∑

j=1

|Aij |+ max
i=1,...,p2

p1∑

j=1

|Aji|

 < ∞.
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Then

lim
ε→0

p lim
n→∞

∣∣∣∣G54−min
~u∈L

~cT B
(
~b + ~u

)∣∣∣∣ = 0,

where
B =

[
Iα + AT A

]−1
AT ,

L =
{
~u : ‖~u‖ ≤ 1, ~u ≤ 0, B(~b + ~u) ≥ 0, (~b + ~u)T BT B(~b + ~u) ≤ 1

}
.


